MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmo Structured version   Visualization version   GIF version

Definition df-nmo 24596
Description: Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 𝑠, 𝑡. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.)
Assertion
Ref Expression
df-nmo normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Distinct variable group:   𝑓,𝑟,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-nmo
StepHypRef Expression
1 cnmo 24593 . 2 class normOp
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 cngp 24465 . . 3 class NrmGrp
5 vf . . . 4 setvar 𝑓
62cv 1539 . . . . 5 class 𝑠
73cv 1539 . . . . 5 class 𝑡
8 cghm 19144 . . . . 5 class GrpHom
96, 7, 8co 7387 . . . 4 class (𝑠 GrpHom 𝑡)
10 vx . . . . . . . . . . 11 setvar 𝑥
1110cv 1539 . . . . . . . . . 10 class 𝑥
125cv 1539 . . . . . . . . . 10 class 𝑓
1311, 12cfv 6511 . . . . . . . . 9 class (𝑓𝑥)
14 cnm 24464 . . . . . . . . . 10 class norm
157, 14cfv 6511 . . . . . . . . 9 class (norm‘𝑡)
1613, 15cfv 6511 . . . . . . . 8 class ((norm‘𝑡)‘(𝑓𝑥))
17 vr . . . . . . . . . 10 setvar 𝑟
1817cv 1539 . . . . . . . . 9 class 𝑟
196, 14cfv 6511 . . . . . . . . . 10 class (norm‘𝑠)
2011, 19cfv 6511 . . . . . . . . 9 class ((norm‘𝑠)‘𝑥)
21 cmul 11073 . . . . . . . . 9 class ·
2218, 20, 21co 7387 . . . . . . . 8 class (𝑟 · ((norm‘𝑠)‘𝑥))
23 cle 11209 . . . . . . . 8 class
2416, 22, 23wbr 5107 . . . . . . 7 wff ((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
25 cbs 17179 . . . . . . . 8 class Base
266, 25cfv 6511 . . . . . . 7 class (Base‘𝑠)
2724, 10, 26wral 3044 . . . . . 6 wff 𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
28 cc0 11068 . . . . . . 7 class 0
29 cpnf 11205 . . . . . . 7 class +∞
30 cico 13308 . . . . . . 7 class [,)
3128, 29, 30co 7387 . . . . . 6 class (0[,)+∞)
3227, 17, 31crab 3405 . . . . 5 class {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}
33 cxr 11207 . . . . 5 class *
34 clt 11208 . . . . 5 class <
3532, 33, 34cinf 9392 . . . 4 class inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )
365, 9, 35cmpt 5188 . . 3 class (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))
372, 3, 4, 4, 36cmpo 7389 . 2 class (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
381, 37wceq 1540 1 wff normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoffn  24599  nmofval  24602
  Copyright terms: Public domain W3C validator