MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmo Structured version   Visualization version   GIF version

Definition df-nmo 24623
Description: Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 𝑠, 𝑡. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.)
Assertion
Ref Expression
df-nmo normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Distinct variable group:   𝑓,𝑟,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-nmo
StepHypRef Expression
1 cnmo 24620 . 2 class normOp
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 cngp 24492 . . 3 class NrmGrp
5 vf . . . 4 setvar 𝑓
62cv 1540 . . . . 5 class 𝑠
73cv 1540 . . . . 5 class 𝑡
8 cghm 19124 . . . . 5 class GrpHom
96, 7, 8co 7346 . . . 4 class (𝑠 GrpHom 𝑡)
10 vx . . . . . . . . . . 11 setvar 𝑥
1110cv 1540 . . . . . . . . . 10 class 𝑥
125cv 1540 . . . . . . . . . 10 class 𝑓
1311, 12cfv 6481 . . . . . . . . 9 class (𝑓𝑥)
14 cnm 24491 . . . . . . . . . 10 class norm
157, 14cfv 6481 . . . . . . . . 9 class (norm‘𝑡)
1613, 15cfv 6481 . . . . . . . 8 class ((norm‘𝑡)‘(𝑓𝑥))
17 vr . . . . . . . . . 10 setvar 𝑟
1817cv 1540 . . . . . . . . 9 class 𝑟
196, 14cfv 6481 . . . . . . . . . 10 class (norm‘𝑠)
2011, 19cfv 6481 . . . . . . . . 9 class ((norm‘𝑠)‘𝑥)
21 cmul 11011 . . . . . . . . 9 class ·
2218, 20, 21co 7346 . . . . . . . 8 class (𝑟 · ((norm‘𝑠)‘𝑥))
23 cle 11147 . . . . . . . 8 class
2416, 22, 23wbr 5089 . . . . . . 7 wff ((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
25 cbs 17120 . . . . . . . 8 class Base
266, 25cfv 6481 . . . . . . 7 class (Base‘𝑠)
2724, 10, 26wral 3047 . . . . . 6 wff 𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
28 cc0 11006 . . . . . . 7 class 0
29 cpnf 11143 . . . . . . 7 class +∞
30 cico 13247 . . . . . . 7 class [,)
3128, 29, 30co 7346 . . . . . 6 class (0[,)+∞)
3227, 17, 31crab 3395 . . . . 5 class {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}
33 cxr 11145 . . . . 5 class *
34 clt 11146 . . . . 5 class <
3532, 33, 34cinf 9325 . . . 4 class inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )
365, 9, 35cmpt 5170 . . 3 class (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))
372, 3, 4, 4, 36cmpo 7348 . 2 class (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
381, 37wceq 1541 1 wff normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoffn  24626  nmofval  24629
  Copyright terms: Public domain W3C validator