MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmo Structured version   Visualization version   GIF version

Definition df-nmo 24572
Description: Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 𝑠, 𝑡. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.)
Assertion
Ref Expression
df-nmo normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Distinct variable group:   𝑓,𝑟,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-nmo
StepHypRef Expression
1 cnmo 24569 . 2 class normOp
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 cngp 24441 . . 3 class NrmGrp
5 vf . . . 4 setvar 𝑓
62cv 1539 . . . . 5 class 𝑠
73cv 1539 . . . . 5 class 𝑡
8 cghm 19120 . . . . 5 class GrpHom
96, 7, 8co 7369 . . . 4 class (𝑠 GrpHom 𝑡)
10 vx . . . . . . . . . . 11 setvar 𝑥
1110cv 1539 . . . . . . . . . 10 class 𝑥
125cv 1539 . . . . . . . . . 10 class 𝑓
1311, 12cfv 6499 . . . . . . . . 9 class (𝑓𝑥)
14 cnm 24440 . . . . . . . . . 10 class norm
157, 14cfv 6499 . . . . . . . . 9 class (norm‘𝑡)
1613, 15cfv 6499 . . . . . . . 8 class ((norm‘𝑡)‘(𝑓𝑥))
17 vr . . . . . . . . . 10 setvar 𝑟
1817cv 1539 . . . . . . . . 9 class 𝑟
196, 14cfv 6499 . . . . . . . . . 10 class (norm‘𝑠)
2011, 19cfv 6499 . . . . . . . . 9 class ((norm‘𝑠)‘𝑥)
21 cmul 11049 . . . . . . . . 9 class ·
2218, 20, 21co 7369 . . . . . . . 8 class (𝑟 · ((norm‘𝑠)‘𝑥))
23 cle 11185 . . . . . . . 8 class
2416, 22, 23wbr 5102 . . . . . . 7 wff ((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
25 cbs 17155 . . . . . . . 8 class Base
266, 25cfv 6499 . . . . . . 7 class (Base‘𝑠)
2724, 10, 26wral 3044 . . . . . 6 wff 𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
28 cc0 11044 . . . . . . 7 class 0
29 cpnf 11181 . . . . . . 7 class +∞
30 cico 13284 . . . . . . 7 class [,)
3128, 29, 30co 7369 . . . . . 6 class (0[,)+∞)
3227, 17, 31crab 3402 . . . . 5 class {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}
33 cxr 11183 . . . . 5 class *
34 clt 11184 . . . . 5 class <
3532, 33, 34cinf 9368 . . . 4 class inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )
365, 9, 35cmpt 5183 . . 3 class (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))
372, 3, 4, 4, 36cmpo 7371 . 2 class (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
381, 37wceq 1540 1 wff normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoffn  24575  nmofval  24578
  Copyright terms: Public domain W3C validator