MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmo Structured version   Visualization version   GIF version

Definition df-nmo 24603
Description: Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 𝑠, 𝑡. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.)
Assertion
Ref Expression
df-nmo normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Distinct variable group:   𝑓,𝑟,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-nmo
StepHypRef Expression
1 cnmo 24600 . 2 class normOp
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 cngp 24472 . . 3 class NrmGrp
5 vf . . . 4 setvar 𝑓
62cv 1539 . . . . 5 class 𝑠
73cv 1539 . . . . 5 class 𝑡
8 cghm 19151 . . . . 5 class GrpHom
96, 7, 8co 7390 . . . 4 class (𝑠 GrpHom 𝑡)
10 vx . . . . . . . . . . 11 setvar 𝑥
1110cv 1539 . . . . . . . . . 10 class 𝑥
125cv 1539 . . . . . . . . . 10 class 𝑓
1311, 12cfv 6514 . . . . . . . . 9 class (𝑓𝑥)
14 cnm 24471 . . . . . . . . . 10 class norm
157, 14cfv 6514 . . . . . . . . 9 class (norm‘𝑡)
1613, 15cfv 6514 . . . . . . . 8 class ((norm‘𝑡)‘(𝑓𝑥))
17 vr . . . . . . . . . 10 setvar 𝑟
1817cv 1539 . . . . . . . . 9 class 𝑟
196, 14cfv 6514 . . . . . . . . . 10 class (norm‘𝑠)
2011, 19cfv 6514 . . . . . . . . 9 class ((norm‘𝑠)‘𝑥)
21 cmul 11080 . . . . . . . . 9 class ·
2218, 20, 21co 7390 . . . . . . . 8 class (𝑟 · ((norm‘𝑠)‘𝑥))
23 cle 11216 . . . . . . . 8 class
2416, 22, 23wbr 5110 . . . . . . 7 wff ((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
25 cbs 17186 . . . . . . . 8 class Base
266, 25cfv 6514 . . . . . . 7 class (Base‘𝑠)
2724, 10, 26wral 3045 . . . . . 6 wff 𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
28 cc0 11075 . . . . . . 7 class 0
29 cpnf 11212 . . . . . . 7 class +∞
30 cico 13315 . . . . . . 7 class [,)
3128, 29, 30co 7390 . . . . . 6 class (0[,)+∞)
3227, 17, 31crab 3408 . . . . 5 class {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}
33 cxr 11214 . . . . 5 class *
34 clt 11215 . . . . 5 class <
3532, 33, 34cinf 9399 . . . 4 class inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )
365, 9, 35cmpt 5191 . . 3 class (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))
372, 3, 4, 4, 36cmpo 7392 . 2 class (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
381, 37wceq 1540 1 wff normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoffn  24606  nmofval  24609
  Copyright terms: Public domain W3C validator