MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmo Structured version   Visualization version   GIF version

Definition df-nmo 23778
Description: Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 𝑠, 𝑡. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.)
Assertion
Ref Expression
df-nmo normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Distinct variable group:   𝑓,𝑟,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-nmo
StepHypRef Expression
1 cnmo 23775 . 2 class normOp
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 cngp 23639 . . 3 class NrmGrp
5 vf . . . 4 setvar 𝑓
62cv 1538 . . . . 5 class 𝑠
73cv 1538 . . . . 5 class 𝑡
8 cghm 18746 . . . . 5 class GrpHom
96, 7, 8co 7255 . . . 4 class (𝑠 GrpHom 𝑡)
10 vx . . . . . . . . . . 11 setvar 𝑥
1110cv 1538 . . . . . . . . . 10 class 𝑥
125cv 1538 . . . . . . . . . 10 class 𝑓
1311, 12cfv 6418 . . . . . . . . 9 class (𝑓𝑥)
14 cnm 23638 . . . . . . . . . 10 class norm
157, 14cfv 6418 . . . . . . . . 9 class (norm‘𝑡)
1613, 15cfv 6418 . . . . . . . 8 class ((norm‘𝑡)‘(𝑓𝑥))
17 vr . . . . . . . . . 10 setvar 𝑟
1817cv 1538 . . . . . . . . 9 class 𝑟
196, 14cfv 6418 . . . . . . . . . 10 class (norm‘𝑠)
2011, 19cfv 6418 . . . . . . . . 9 class ((norm‘𝑠)‘𝑥)
21 cmul 10807 . . . . . . . . 9 class ·
2218, 20, 21co 7255 . . . . . . . 8 class (𝑟 · ((norm‘𝑠)‘𝑥))
23 cle 10941 . . . . . . . 8 class
2416, 22, 23wbr 5070 . . . . . . 7 wff ((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
25 cbs 16840 . . . . . . . 8 class Base
266, 25cfv 6418 . . . . . . 7 class (Base‘𝑠)
2724, 10, 26wral 3063 . . . . . 6 wff 𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
28 cc0 10802 . . . . . . 7 class 0
29 cpnf 10937 . . . . . . 7 class +∞
30 cico 13010 . . . . . . 7 class [,)
3128, 29, 30co 7255 . . . . . 6 class (0[,)+∞)
3227, 17, 31crab 3067 . . . . 5 class {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}
33 cxr 10939 . . . . 5 class *
34 clt 10940 . . . . 5 class <
3532, 33, 34cinf 9130 . . . 4 class inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )
365, 9, 35cmpt 5153 . . 3 class (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))
372, 3, 4, 4, 36cmpo 7257 . 2 class (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
381, 37wceq 1539 1 wff normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoffn  23781  nmofval  23784
  Copyright terms: Public domain W3C validator