Detailed syntax breakdown of Definition df-nmo
Step | Hyp | Ref
| Expression |
1 | | cnmo 23869 |
. 2
class
normOp |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | vt |
. . 3
setvar 𝑡 |
4 | | cngp 23733 |
. . 3
class
NrmGrp |
5 | | vf |
. . . 4
setvar 𝑓 |
6 | 2 | cv 1538 |
. . . . 5
class 𝑠 |
7 | 3 | cv 1538 |
. . . . 5
class 𝑡 |
8 | | cghm 18831 |
. . . . 5
class
GrpHom |
9 | 6, 7, 8 | co 7275 |
. . . 4
class (𝑠 GrpHom 𝑡) |
10 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
11 | 10 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
12 | 5 | cv 1538 |
. . . . . . . . . 10
class 𝑓 |
13 | 11, 12 | cfv 6433 |
. . . . . . . . 9
class (𝑓‘𝑥) |
14 | | cnm 23732 |
. . . . . . . . . 10
class
norm |
15 | 7, 14 | cfv 6433 |
. . . . . . . . 9
class
(norm‘𝑡) |
16 | 13, 15 | cfv 6433 |
. . . . . . . 8
class
((norm‘𝑡)‘(𝑓‘𝑥)) |
17 | | vr |
. . . . . . . . . 10
setvar 𝑟 |
18 | 17 | cv 1538 |
. . . . . . . . 9
class 𝑟 |
19 | 6, 14 | cfv 6433 |
. . . . . . . . . 10
class
(norm‘𝑠) |
20 | 11, 19 | cfv 6433 |
. . . . . . . . 9
class
((norm‘𝑠)‘𝑥) |
21 | | cmul 10876 |
. . . . . . . . 9
class
· |
22 | 18, 20, 21 | co 7275 |
. . . . . . . 8
class (𝑟 · ((norm‘𝑠)‘𝑥)) |
23 | | cle 11010 |
. . . . . . . 8
class
≤ |
24 | 16, 22, 23 | wbr 5074 |
. . . . . . 7
wff
((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) |
25 | | cbs 16912 |
. . . . . . . 8
class
Base |
26 | 6, 25 | cfv 6433 |
. . . . . . 7
class
(Base‘𝑠) |
27 | 24, 10, 26 | wral 3064 |
. . . . . 6
wff
∀𝑥 ∈
(Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) |
28 | | cc0 10871 |
. . . . . . 7
class
0 |
29 | | cpnf 11006 |
. . . . . . 7
class
+∞ |
30 | | cico 13081 |
. . . . . . 7
class
[,) |
31 | 28, 29, 30 | co 7275 |
. . . . . 6
class
(0[,)+∞) |
32 | 27, 17, 31 | crab 3068 |
. . . . 5
class {𝑟 ∈ (0[,)+∞) ∣
∀𝑥 ∈
(Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))} |
33 | | cxr 11008 |
. . . . 5
class
ℝ* |
34 | | clt 11009 |
. . . . 5
class
< |
35 | 32, 33, 34 | cinf 9200 |
. . . 4
class
inf({𝑟 ∈
(0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, <
) |
36 | 5, 9, 35 | cmpt 5157 |
. . 3
class (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, <
)) |
37 | 2, 3, 4, 4, 36 | cmpo 7277 |
. 2
class (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, <
))) |
38 | 1, 37 | wceq 1539 |
1
wff normOp =
(𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, <
))) |