MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmo Structured version   Visualization version   GIF version

Definition df-nmo 24594
Description: Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 𝑠, 𝑡. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.)
Assertion
Ref Expression
df-nmo normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Distinct variable group:   𝑓,𝑟,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-nmo
StepHypRef Expression
1 cnmo 24591 . 2 class normOp
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 cngp 24463 . . 3 class NrmGrp
5 vf . . . 4 setvar 𝑓
62cv 1539 . . . . 5 class 𝑠
73cv 1539 . . . . 5 class 𝑡
8 cghm 19091 . . . . 5 class GrpHom
96, 7, 8co 7349 . . . 4 class (𝑠 GrpHom 𝑡)
10 vx . . . . . . . . . . 11 setvar 𝑥
1110cv 1539 . . . . . . . . . 10 class 𝑥
125cv 1539 . . . . . . . . . 10 class 𝑓
1311, 12cfv 6482 . . . . . . . . 9 class (𝑓𝑥)
14 cnm 24462 . . . . . . . . . 10 class norm
157, 14cfv 6482 . . . . . . . . 9 class (norm‘𝑡)
1613, 15cfv 6482 . . . . . . . 8 class ((norm‘𝑡)‘(𝑓𝑥))
17 vr . . . . . . . . . 10 setvar 𝑟
1817cv 1539 . . . . . . . . 9 class 𝑟
196, 14cfv 6482 . . . . . . . . . 10 class (norm‘𝑠)
2011, 19cfv 6482 . . . . . . . . 9 class ((norm‘𝑠)‘𝑥)
21 cmul 11014 . . . . . . . . 9 class ·
2218, 20, 21co 7349 . . . . . . . 8 class (𝑟 · ((norm‘𝑠)‘𝑥))
23 cle 11150 . . . . . . . 8 class
2416, 22, 23wbr 5092 . . . . . . 7 wff ((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
25 cbs 17120 . . . . . . . 8 class Base
266, 25cfv 6482 . . . . . . 7 class (Base‘𝑠)
2724, 10, 26wral 3044 . . . . . 6 wff 𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
28 cc0 11009 . . . . . . 7 class 0
29 cpnf 11146 . . . . . . 7 class +∞
30 cico 13250 . . . . . . 7 class [,)
3128, 29, 30co 7349 . . . . . 6 class (0[,)+∞)
3227, 17, 31crab 3394 . . . . 5 class {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}
33 cxr 11148 . . . . 5 class *
34 clt 11149 . . . . 5 class <
3532, 33, 34cinf 9331 . . . 4 class inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )
365, 9, 35cmpt 5173 . . 3 class (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))
372, 3, 4, 4, 36cmpo 7351 . 2 class (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
381, 37wceq 1540 1 wff normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoffn  24597  nmofval  24600
  Copyright terms: Public domain W3C validator