MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmo Structured version   Visualization version   GIF version

Definition df-nmo 23395
Description: Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 𝑠, 𝑡. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.)
Assertion
Ref Expression
df-nmo normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Distinct variable group:   𝑓,𝑟,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-nmo
StepHypRef Expression
1 cnmo 23392 . 2 class normOp
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 cngp 23264 . . 3 class NrmGrp
5 vf . . . 4 setvar 𝑓
62cv 1538 . . . . 5 class 𝑠
73cv 1538 . . . . 5 class 𝑡
8 cghm 18407 . . . . 5 class GrpHom
96, 7, 8co 7143 . . . 4 class (𝑠 GrpHom 𝑡)
10 vx . . . . . . . . . . 11 setvar 𝑥
1110cv 1538 . . . . . . . . . 10 class 𝑥
125cv 1538 . . . . . . . . . 10 class 𝑓
1311, 12cfv 6328 . . . . . . . . 9 class (𝑓𝑥)
14 cnm 23263 . . . . . . . . . 10 class norm
157, 14cfv 6328 . . . . . . . . 9 class (norm‘𝑡)
1613, 15cfv 6328 . . . . . . . 8 class ((norm‘𝑡)‘(𝑓𝑥))
17 vr . . . . . . . . . 10 setvar 𝑟
1817cv 1538 . . . . . . . . 9 class 𝑟
196, 14cfv 6328 . . . . . . . . . 10 class (norm‘𝑠)
2011, 19cfv 6328 . . . . . . . . 9 class ((norm‘𝑠)‘𝑥)
21 cmul 10565 . . . . . . . . 9 class ·
2218, 20, 21co 7143 . . . . . . . 8 class (𝑟 · ((norm‘𝑠)‘𝑥))
23 cle 10699 . . . . . . . 8 class
2416, 22, 23wbr 5025 . . . . . . 7 wff ((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
25 cbs 16526 . . . . . . . 8 class Base
266, 25cfv 6328 . . . . . . 7 class (Base‘𝑠)
2724, 10, 26wral 3068 . . . . . 6 wff 𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
28 cc0 10560 . . . . . . 7 class 0
29 cpnf 10695 . . . . . . 7 class +∞
30 cico 12766 . . . . . . 7 class [,)
3128, 29, 30co 7143 . . . . . 6 class (0[,)+∞)
3227, 17, 31crab 3072 . . . . 5 class {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}
33 cxr 10697 . . . . 5 class *
34 clt 10698 . . . . 5 class <
3532, 33, 34cinf 8923 . . . 4 class inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )
365, 9, 35cmpt 5105 . . 3 class (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))
372, 3, 4, 4, 36cmpo 7145 . 2 class (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
381, 37wceq 1539 1 wff normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoffn  23398  nmofval  23401
  Copyright terms: Public domain W3C validator