MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nmo Structured version   Visualization version   GIF version

Definition df-nmo 23872
Description: Define the norm of an operator between two normed groups (usually vector spaces). This definition produces an operator norm function for each pair of groups 𝑠, 𝑡. Equivalent to the definition of linear operator norm in [AkhiezerGlazman] p. 39. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 25-Sep-2020.)
Assertion
Ref Expression
df-nmo normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Distinct variable group:   𝑓,𝑟,𝑠,𝑡,𝑥

Detailed syntax breakdown of Definition df-nmo
StepHypRef Expression
1 cnmo 23869 . 2 class normOp
2 vs . . 3 setvar 𝑠
3 vt . . 3 setvar 𝑡
4 cngp 23733 . . 3 class NrmGrp
5 vf . . . 4 setvar 𝑓
62cv 1538 . . . . 5 class 𝑠
73cv 1538 . . . . 5 class 𝑡
8 cghm 18831 . . . . 5 class GrpHom
96, 7, 8co 7275 . . . 4 class (𝑠 GrpHom 𝑡)
10 vx . . . . . . . . . . 11 setvar 𝑥
1110cv 1538 . . . . . . . . . 10 class 𝑥
125cv 1538 . . . . . . . . . 10 class 𝑓
1311, 12cfv 6433 . . . . . . . . 9 class (𝑓𝑥)
14 cnm 23732 . . . . . . . . . 10 class norm
157, 14cfv 6433 . . . . . . . . 9 class (norm‘𝑡)
1613, 15cfv 6433 . . . . . . . 8 class ((norm‘𝑡)‘(𝑓𝑥))
17 vr . . . . . . . . . 10 setvar 𝑟
1817cv 1538 . . . . . . . . 9 class 𝑟
196, 14cfv 6433 . . . . . . . . . 10 class (norm‘𝑠)
2011, 19cfv 6433 . . . . . . . . 9 class ((norm‘𝑠)‘𝑥)
21 cmul 10876 . . . . . . . . 9 class ·
2218, 20, 21co 7275 . . . . . . . 8 class (𝑟 · ((norm‘𝑠)‘𝑥))
23 cle 11010 . . . . . . . 8 class
2416, 22, 23wbr 5074 . . . . . . 7 wff ((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
25 cbs 16912 . . . . . . . 8 class Base
266, 25cfv 6433 . . . . . . 7 class (Base‘𝑠)
2724, 10, 26wral 3064 . . . . . 6 wff 𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))
28 cc0 10871 . . . . . . 7 class 0
29 cpnf 11006 . . . . . . 7 class +∞
30 cico 13081 . . . . . . 7 class [,)
3128, 29, 30co 7275 . . . . . 6 class (0[,)+∞)
3227, 17, 31crab 3068 . . . . 5 class {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}
33 cxr 11008 . . . . 5 class *
34 clt 11009 . . . . 5 class <
3532, 33, 34cinf 9200 . . . 4 class inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )
365, 9, 35cmpt 5157 . . 3 class (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ))
372, 3, 4, 4, 36cmpo 7277 . 2 class (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
381, 37wceq 1539 1 wff normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
This definition is referenced by:  nmoffn  23875  nmofval  23878
  Copyright terms: Public domain W3C validator