MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmofval Structured version   Visualization version   GIF version

Theorem nmofval 24756
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmofval ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
Distinct variable groups:   𝑓,𝑟,𝑥,𝐿   𝑓,𝑀,𝑟,𝑥   𝑆,𝑓,𝑟,𝑥   𝑇,𝑓,𝑟,𝑥   𝑓,𝑉,𝑟,𝑥   𝑁,𝑟,𝑥
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem nmofval
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . 2 𝑁 = (𝑆 normOp 𝑇)
2 oveq12 7457 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇))
3 simpl 482 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑠 = 𝑆)
43fveq2d 6924 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = (Base‘𝑆))
5 nmofval.2 . . . . . . . 8 𝑉 = (Base‘𝑆)
64, 5eqtr4di 2798 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝑉)
7 simpr 484 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑡 = 𝑇)
87fveq2d 6924 . . . . . . . . . 10 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑡) = (norm‘𝑇))
9 nmofval.4 . . . . . . . . . 10 𝑀 = (norm‘𝑇)
108, 9eqtr4di 2798 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑡) = 𝑀)
1110fveq1d 6922 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → ((norm‘𝑡)‘(𝑓𝑥)) = (𝑀‘(𝑓𝑥)))
123fveq2d 6924 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑠) = (norm‘𝑆))
13 nmofval.3 . . . . . . . . . . 11 𝐿 = (norm‘𝑆)
1412, 13eqtr4di 2798 . . . . . . . . . 10 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑠) = 𝐿)
1514fveq1d 6922 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → ((norm‘𝑠)‘𝑥) = (𝐿𝑥))
1615oveq2d 7464 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑟 · ((norm‘𝑠)‘𝑥)) = (𝑟 · (𝐿𝑥)))
1711, 16breq12d 5179 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))))
186, 17raleqbidv 3354 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))))
1918rabbidv 3451 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))} = {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))})
2019infeq1d 9546 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
212, 20mpteq12dv 5257 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
22 df-nmo 24750 . . 3 normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
23 eqid 2740 . . . . 5 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
24 ssrab2 4103 . . . . . . 7 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ (0[,)+∞)
25 icossxr 13492 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
2624, 25sstri 4018 . . . . . 6 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ*
27 infxrcl 13395 . . . . . 6 ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ∈ ℝ*)
2826, 27mp1i 13 . . . . 5 (𝑓 ∈ (𝑆 GrpHom 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ∈ ℝ*)
2923, 28fmpti 7146 . . . 4 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ*
30 ovex 7481 . . . 4 (𝑆 GrpHom 𝑇) ∈ V
31 xrex 13052 . . . 4 * ∈ V
32 fex2 7974 . . . 4 (((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ* ∧ (𝑆 GrpHom 𝑇) ∈ V ∧ ℝ* ∈ V) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) ∈ V)
3329, 30, 31, 32mp3an 1461 . . 3 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) ∈ V
3421, 22, 33ovmpoa 7605 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
351, 34eqtrid 2792 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  0cc0 11184   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409  Basecbs 17258   GrpHom cghm 19252  normcnm 24610  NrmGrpcngp 24611   normOp cnmo 24747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-ico 13413  df-nmo 24750
This theorem is referenced by:  nmoval  24757  nmof  24761
  Copyright terms: Public domain W3C validator