Step | Hyp | Ref
| Expression |
1 | | nmofval.1 |
. 2
⊢ 𝑁 = (𝑆 normOp 𝑇) |
2 | | oveq12 7264 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇)) |
3 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → 𝑠 = 𝑆) |
4 | 3 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (Base‘𝑠) = (Base‘𝑆)) |
5 | | nmofval.2 |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑆) |
6 | 4, 5 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (Base‘𝑠) = 𝑉) |
7 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → 𝑡 = 𝑇) |
8 | 7 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (norm‘𝑡) = (norm‘𝑇)) |
9 | | nmofval.4 |
. . . . . . . . . 10
⊢ 𝑀 = (norm‘𝑇) |
10 | 8, 9 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (norm‘𝑡) = 𝑀) |
11 | 10 | fveq1d 6758 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((norm‘𝑡)‘(𝑓‘𝑥)) = (𝑀‘(𝑓‘𝑥))) |
12 | 3 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (norm‘𝑠) = (norm‘𝑆)) |
13 | | nmofval.3 |
. . . . . . . . . . 11
⊢ 𝐿 = (norm‘𝑆) |
14 | 12, 13 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (norm‘𝑠) = 𝐿) |
15 | 14 | fveq1d 6758 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((norm‘𝑠)‘𝑥) = (𝐿‘𝑥)) |
16 | 15 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑟 · ((norm‘𝑠)‘𝑥)) = (𝑟 · (𝐿‘𝑥))) |
17 | 11, 16 | breq12d 5083 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)))) |
18 | 6, 17 | raleqbidv 3327 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)))) |
19 | 18 | rabbidv 3404 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))} = {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}) |
20 | 19 | infeq1d 9166 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ) = inf({𝑟 ∈ (0[,)+∞) ∣
∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
)) |
21 | 2, 20 | mpteq12dv 5161 |
. . 3
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
))) |
22 | | df-nmo 23778 |
. . 3
⊢ normOp =
(𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, <
))) |
23 | | eqid 2738 |
. . . . 5
⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
)) |
24 | | ssrab2 4009 |
. . . . . . 7
⊢ {𝑟 ∈ (0[,)+∞) ∣
∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} ⊆ (0[,)+∞) |
25 | | icossxr 13093 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ* |
26 | 24, 25 | sstri 3926 |
. . . . . 6
⊢ {𝑟 ∈ (0[,)+∞) ∣
∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} ⊆
ℝ* |
27 | | infxrcl 12996 |
. . . . . 6
⊢ ({𝑟 ∈ (0[,)+∞) ∣
∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} ⊆ ℝ* →
inf({𝑟 ∈
(0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ) ∈
ℝ*) |
28 | 26, 27 | mp1i 13 |
. . . . 5
⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ) ∈
ℝ*) |
29 | 23, 28 | fmpti 6968 |
. . . 4
⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ* |
30 | | ovex 7288 |
. . . 4
⊢ (𝑆 GrpHom 𝑇) ∈ V |
31 | | xrex 12656 |
. . . 4
⊢
ℝ* ∈ V |
32 | | fex2 7754 |
. . . 4
⊢ (((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ* ∧ (𝑆 GrpHom 𝑇) ∈ V ∧ ℝ* ∈
V) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) ∈
V) |
33 | 29, 30, 31, 32 | mp3an 1459 |
. . 3
⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) ∈
V |
34 | 21, 22, 33 | ovmpoa 7406 |
. 2
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
))) |
35 | 1, 34 | eqtrid 2790 |
1
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
))) |