| Step | Hyp | Ref
| Expression |
| 1 | | nmofval.1 |
. 2
⊢ 𝑁 = (𝑆 normOp 𝑇) |
| 2 | | oveq12 7412 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇)) |
| 3 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → 𝑠 = 𝑆) |
| 4 | 3 | fveq2d 6879 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (Base‘𝑠) = (Base‘𝑆)) |
| 5 | | nmofval.2 |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑆) |
| 6 | 4, 5 | eqtr4di 2788 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (Base‘𝑠) = 𝑉) |
| 7 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → 𝑡 = 𝑇) |
| 8 | 7 | fveq2d 6879 |
. . . . . . . . . 10
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (norm‘𝑡) = (norm‘𝑇)) |
| 9 | | nmofval.4 |
. . . . . . . . . 10
⊢ 𝑀 = (norm‘𝑇) |
| 10 | 8, 9 | eqtr4di 2788 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (norm‘𝑡) = 𝑀) |
| 11 | 10 | fveq1d 6877 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((norm‘𝑡)‘(𝑓‘𝑥)) = (𝑀‘(𝑓‘𝑥))) |
| 12 | 3 | fveq2d 6879 |
. . . . . . . . . . 11
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (norm‘𝑠) = (norm‘𝑆)) |
| 13 | | nmofval.3 |
. . . . . . . . . . 11
⊢ 𝐿 = (norm‘𝑆) |
| 14 | 12, 13 | eqtr4di 2788 |
. . . . . . . . . 10
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (norm‘𝑠) = 𝐿) |
| 15 | 14 | fveq1d 6877 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((norm‘𝑠)‘𝑥) = (𝐿‘𝑥)) |
| 16 | 15 | oveq2d 7419 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑟 · ((norm‘𝑠)‘𝑥)) = (𝑟 · (𝐿‘𝑥))) |
| 17 | 11, 16 | breq12d 5132 |
. . . . . . 7
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)))) |
| 18 | 6, 17 | raleqbidv 3325 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)))) |
| 19 | 18 | rabbidv 3423 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))} = {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}) |
| 20 | 19 | infeq1d 9488 |
. . . 4
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ) = inf({𝑟 ∈ (0[,)+∞) ∣
∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
)) |
| 21 | 2, 20 | mpteq12dv 5207 |
. . 3
⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
))) |
| 22 | | df-nmo 24645 |
. . 3
⊢ normOp =
(𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, <
))) |
| 23 | | eqid 2735 |
. . . . 5
⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
)) |
| 24 | | ssrab2 4055 |
. . . . . . 7
⊢ {𝑟 ∈ (0[,)+∞) ∣
∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} ⊆ (0[,)+∞) |
| 25 | | icossxr 13447 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ* |
| 26 | 24, 25 | sstri 3968 |
. . . . . 6
⊢ {𝑟 ∈ (0[,)+∞) ∣
∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} ⊆
ℝ* |
| 27 | | infxrcl 13348 |
. . . . . 6
⊢ ({𝑟 ∈ (0[,)+∞) ∣
∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} ⊆ ℝ* →
inf({𝑟 ∈
(0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ) ∈
ℝ*) |
| 28 | 26, 27 | mp1i 13 |
. . . . 5
⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ) ∈
ℝ*) |
| 29 | 23, 28 | fmpti 7101 |
. . . 4
⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ* |
| 30 | | ovex 7436 |
. . . 4
⊢ (𝑆 GrpHom 𝑇) ∈ V |
| 31 | | xrex 13001 |
. . . 4
⊢
ℝ* ∈ V |
| 32 | | fex2 7930 |
. . . 4
⊢ (((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ* ∧ (𝑆 GrpHom 𝑇) ∈ V ∧ ℝ* ∈
V) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) ∈
V) |
| 33 | 29, 30, 31, 32 | mp3an 1463 |
. . 3
⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) ∈
V |
| 34 | 21, 22, 33 | ovmpoa 7560 |
. 2
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
))) |
| 35 | 1, 34 | eqtrid 2782 |
1
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, <
))) |