MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmofval Structured version   Visualization version   GIF version

Theorem nmofval 23322
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmofval ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
Distinct variable groups:   𝑓,𝑟,𝑥,𝐿   𝑓,𝑀,𝑟,𝑥   𝑆,𝑓,𝑟,𝑥   𝑇,𝑓,𝑟,𝑥   𝑓,𝑉,𝑟,𝑥   𝑁,𝑟,𝑥
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem nmofval
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . 2 𝑁 = (𝑆 normOp 𝑇)
2 oveq12 7164 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠 GrpHom 𝑡) = (𝑆 GrpHom 𝑇))
3 simpl 485 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑠 = 𝑆)
43fveq2d 6673 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = (Base‘𝑆))
5 nmofval.2 . . . . . . . 8 𝑉 = (Base‘𝑆)
64, 5syl6eqr 2874 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝑉)
7 simpr 487 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑡 = 𝑇)
87fveq2d 6673 . . . . . . . . . 10 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑡) = (norm‘𝑇))
9 nmofval.4 . . . . . . . . . 10 𝑀 = (norm‘𝑇)
108, 9syl6eqr 2874 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑡) = 𝑀)
1110fveq1d 6671 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → ((norm‘𝑡)‘(𝑓𝑥)) = (𝑀‘(𝑓𝑥)))
123fveq2d 6673 . . . . . . . . . . 11 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑠) = (norm‘𝑆))
13 nmofval.3 . . . . . . . . . . 11 𝐿 = (norm‘𝑆)
1412, 13syl6eqr 2874 . . . . . . . . . 10 ((𝑠 = 𝑆𝑡 = 𝑇) → (norm‘𝑠) = 𝐿)
1514fveq1d 6671 . . . . . . . . 9 ((𝑠 = 𝑆𝑡 = 𝑇) → ((norm‘𝑠)‘𝑥) = (𝐿𝑥))
1615oveq2d 7171 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑟 · ((norm‘𝑠)‘𝑥)) = (𝑟 · (𝐿𝑥)))
1711, 16breq12d 5078 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))))
186, 17raleqbidv 3401 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥)) ↔ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))))
1918rabbidv 3480 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))} = {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))})
2019infeq1d 8940 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < ) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
212, 20mpteq12dv 5150 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
22 df-nmo 23316 . . 3 normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
23 eqid 2821 . . . . 5 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
24 ssrab2 4055 . . . . . . 7 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ (0[,)+∞)
25 icossxr 12820 . . . . . . 7 (0[,)+∞) ⊆ ℝ*
2624, 25sstri 3975 . . . . . 6 {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ*
27 infxrcl 12725 . . . . . 6 ({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} ⊆ ℝ* → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ∈ ℝ*)
2826, 27mp1i 13 . . . . 5 (𝑓 ∈ (𝑆 GrpHom 𝑇) → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ∈ ℝ*)
2923, 28fmpti 6875 . . . 4 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ*
30 ovex 7188 . . . 4 (𝑆 GrpHom 𝑇) ∈ V
31 xrex 12385 . . . 4 * ∈ V
32 fex2 7637 . . . 4 (((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )):(𝑆 GrpHom 𝑇)⟶ℝ* ∧ (𝑆 GrpHom 𝑇) ∈ V ∧ ℝ* ∈ V) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) ∈ V)
3329, 30, 31, 32mp3an 1457 . . 3 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) ∈ V
3421, 22, 33ovmpoa 7304 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑆 normOp 𝑇) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
351, 34syl5eq 2868 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  wss 3935   class class class wbr 5065  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  infcinf 8904  0cc0 10536   · cmul 10541  +∞cpnf 10671  *cxr 10673   < clt 10674  cle 10675  [,)cico 12739  Basecbs 16482   GrpHom cghm 18354  normcnm 23185  NrmGrpcngp 23186   normOp cnmo 23313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7688  df-2nd 7689  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-ico 12743  df-nmo 23316
This theorem is referenced by:  nmoval  23323  nmof  23327
  Copyright terms: Public domain W3C validator