MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmofval Structured version   Visualization version   GIF version

Theorem nmofval 24451
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Baseβ€˜π‘†)
nmofval.3 𝐿 = (normβ€˜π‘†)
nmofval.4 𝑀 = (normβ€˜π‘‡)
Assertion
Ref Expression
nmofval ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) β†’ 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )))
Distinct variable groups:   𝑓,π‘Ÿ,π‘₯,𝐿   𝑓,𝑀,π‘Ÿ,π‘₯   𝑆,𝑓,π‘Ÿ,π‘₯   𝑇,𝑓,π‘Ÿ,π‘₯   𝑓,𝑉,π‘Ÿ,π‘₯   𝑁,π‘Ÿ,π‘₯
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem nmofval
Dummy variables 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . 2 𝑁 = (𝑆 normOp 𝑇)
2 oveq12 7420 . . . 4 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (𝑠 GrpHom 𝑑) = (𝑆 GrpHom 𝑇))
3 simpl 481 . . . . . . . . 9 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ 𝑠 = 𝑆)
43fveq2d 6894 . . . . . . . 8 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (Baseβ€˜π‘ ) = (Baseβ€˜π‘†))
5 nmofval.2 . . . . . . . 8 𝑉 = (Baseβ€˜π‘†)
64, 5eqtr4di 2788 . . . . . . 7 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (Baseβ€˜π‘ ) = 𝑉)
7 simpr 483 . . . . . . . . . . 11 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ 𝑑 = 𝑇)
87fveq2d 6894 . . . . . . . . . 10 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (normβ€˜π‘‘) = (normβ€˜π‘‡))
9 nmofval.4 . . . . . . . . . 10 𝑀 = (normβ€˜π‘‡)
108, 9eqtr4di 2788 . . . . . . . . 9 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (normβ€˜π‘‘) = 𝑀)
1110fveq1d 6892 . . . . . . . 8 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ ((normβ€˜π‘‘)β€˜(π‘“β€˜π‘₯)) = (π‘€β€˜(π‘“β€˜π‘₯)))
123fveq2d 6894 . . . . . . . . . . 11 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (normβ€˜π‘ ) = (normβ€˜π‘†))
13 nmofval.3 . . . . . . . . . . 11 𝐿 = (normβ€˜π‘†)
1412, 13eqtr4di 2788 . . . . . . . . . 10 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (normβ€˜π‘ ) = 𝐿)
1514fveq1d 6892 . . . . . . . . 9 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ ((normβ€˜π‘ )β€˜π‘₯) = (πΏβ€˜π‘₯))
1615oveq2d 7427 . . . . . . . 8 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (π‘Ÿ Β· ((normβ€˜π‘ )β€˜π‘₯)) = (π‘Ÿ Β· (πΏβ€˜π‘₯)))
1711, 16breq12d 5160 . . . . . . 7 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (((normβ€˜π‘‘)β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· ((normβ€˜π‘ )β€˜π‘₯)) ↔ (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))))
186, 17raleqbidv 3340 . . . . . 6 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘ )((normβ€˜π‘‘)β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· ((normβ€˜π‘ )β€˜π‘₯)) ↔ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))))
1918rabbidv 3438 . . . . 5 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘ )((normβ€˜π‘‘)β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· ((normβ€˜π‘ )β€˜π‘₯))} = {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))})
2019infeq1d 9474 . . . 4 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘ )((normβ€˜π‘‘)β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· ((normβ€˜π‘ )β€˜π‘₯))}, ℝ*, < ) = inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ))
212, 20mpteq12dv 5238 . . 3 ((𝑠 = 𝑆 ∧ 𝑑 = 𝑇) β†’ (𝑓 ∈ (𝑠 GrpHom 𝑑) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘ )((normβ€˜π‘‘)β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· ((normβ€˜π‘ )β€˜π‘₯))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )))
22 df-nmo 24445 . . 3 normOp = (𝑠 ∈ NrmGrp, 𝑑 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑑) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘ )((normβ€˜π‘‘)β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· ((normβ€˜π‘ )β€˜π‘₯))}, ℝ*, < )))
23 eqid 2730 . . . . 5 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ))
24 ssrab2 4076 . . . . . . 7 {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† (0[,)+∞)
25 icossxr 13413 . . . . . . 7 (0[,)+∞) βŠ† ℝ*
2624, 25sstri 3990 . . . . . 6 {π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† ℝ*
27 infxrcl 13316 . . . . . 6 ({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))} βŠ† ℝ* β†’ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ) ∈ ℝ*)
2826, 27mp1i 13 . . . . 5 (𝑓 ∈ (𝑆 GrpHom 𝑇) β†’ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < ) ∈ ℝ*)
2923, 28fmpti 7112 . . . 4 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )):(𝑆 GrpHom 𝑇)βŸΆβ„*
30 ovex 7444 . . . 4 (𝑆 GrpHom 𝑇) ∈ V
31 xrex 12975 . . . 4 ℝ* ∈ V
32 fex2 7926 . . . 4 (((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )):(𝑆 GrpHom 𝑇)βŸΆβ„* ∧ (𝑆 GrpHom 𝑇) ∈ V ∧ ℝ* ∈ V) β†’ (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )) ∈ V)
3329, 30, 31, 32mp3an 1459 . . 3 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )) ∈ V
3421, 22, 33ovmpoa 7565 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) β†’ (𝑆 normOp 𝑇) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )))
351, 34eqtrid 2782 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) β†’ 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({π‘Ÿ ∈ (0[,)+∞) ∣ βˆ€π‘₯ ∈ 𝑉 (π‘€β€˜(π‘“β€˜π‘₯)) ≀ (π‘Ÿ Β· (πΏβ€˜π‘₯))}, ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430  Vcvv 3472   βŠ† wss 3947   class class class wbr 5147   ↦ cmpt 5230  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  infcinf 9438  0cc0 11112   Β· cmul 11117  +∞cpnf 11249  β„*cxr 11251   < clt 11252   ≀ cle 11253  [,)cico 13330  Basecbs 17148   GrpHom cghm 19127  normcnm 24305  NrmGrpcngp 24306   normOp cnmo 24442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-ico 13334  df-nmo 24445
This theorem is referenced by:  nmoval  24452  nmof  24456
  Copyright terms: Public domain W3C validator