MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoofval Structured version   Visualization version   GIF version

Theorem nmoofval 29025
Description: The operator norm function. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1 𝑋 = (BaseSet‘𝑈)
nmoofval.2 𝑌 = (BaseSet‘𝑊)
nmoofval.3 𝐿 = (normCV𝑈)
nmoofval.4 𝑀 = (normCV𝑊)
nmoofval.6 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmoofval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
Distinct variable groups:   𝑥,𝑡,𝑧,𝑈   𝑡,𝑊,𝑥,𝑧   𝑡,𝑋,𝑧   𝑡,𝑌,𝑥   𝑡,𝐿   𝑡,𝑀
Allowed substitution hints:   𝐿(𝑥,𝑧)   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧,𝑡)   𝑋(𝑥)   𝑌(𝑧)

Proof of Theorem nmoofval
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoofval.6 . 2 𝑁 = (𝑈 normOpOLD 𝑊)
2 fveq2 6756 . . . . . 6 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 nmoofval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
42, 3eqtr4di 2797 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
54oveq2d 7271 . . . 4 (𝑢 = 𝑈 → ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) = ((BaseSet‘𝑤) ↑m 𝑋))
6 fveq2 6756 . . . . . . . . . . 11 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
7 nmoofval.3 . . . . . . . . . . 11 𝐿 = (normCV𝑈)
86, 7eqtr4di 2797 . . . . . . . . . 10 (𝑢 = 𝑈 → (normCV𝑢) = 𝐿)
98fveq1d 6758 . . . . . . . . 9 (𝑢 = 𝑈 → ((normCV𝑢)‘𝑧) = (𝐿𝑧))
109breq1d 5080 . . . . . . . 8 (𝑢 = 𝑈 → (((normCV𝑢)‘𝑧) ≤ 1 ↔ (𝐿𝑧) ≤ 1))
1110anbi1d 629 . . . . . . 7 (𝑢 = 𝑈 → ((((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))))
124, 11rexeqbidv 3328 . . . . . 6 (𝑢 = 𝑈 → (∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))))
1312abbidv 2808 . . . . 5 (𝑢 = 𝑈 → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))})
1413supeq1d 9135 . . . 4 (𝑢 = 𝑈 → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ))
155, 14mpteq12dv 5161 . . 3 (𝑢 = 𝑈 → (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
16 fveq2 6756 . . . . . 6 (𝑤 = 𝑊 → (BaseSet‘𝑤) = (BaseSet‘𝑊))
17 nmoofval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
1816, 17eqtr4di 2797 . . . . 5 (𝑤 = 𝑊 → (BaseSet‘𝑤) = 𝑌)
1918oveq1d 7270 . . . 4 (𝑤 = 𝑊 → ((BaseSet‘𝑤) ↑m 𝑋) = (𝑌m 𝑋))
20 fveq2 6756 . . . . . . . . . . 11 (𝑤 = 𝑊 → (normCV𝑤) = (normCV𝑊))
21 nmoofval.4 . . . . . . . . . . 11 𝑀 = (normCV𝑊)
2220, 21eqtr4di 2797 . . . . . . . . . 10 (𝑤 = 𝑊 → (normCV𝑤) = 𝑀)
2322fveq1d 6758 . . . . . . . . 9 (𝑤 = 𝑊 → ((normCV𝑤)‘(𝑡𝑧)) = (𝑀‘(𝑡𝑧)))
2423eqeq2d 2749 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 = ((normCV𝑤)‘(𝑡𝑧)) ↔ 𝑥 = (𝑀‘(𝑡𝑧))))
2524anbi2d 628 . . . . . . 7 (𝑤 = 𝑊 → (((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))))
2625rexbidv 3225 . . . . . 6 (𝑤 = 𝑊 → (∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))))
2726abbidv 2808 . . . . 5 (𝑤 = 𝑊 → {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))})
2827supeq1d 9135 . . . 4 (𝑤 = 𝑊 → sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))
2919, 28mpteq12dv 5161 . . 3 (𝑤 = 𝑊 → (𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
30 df-nmoo 29008 . . 3 normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
31 ovex 7288 . . . 4 (𝑌m 𝑋) ∈ V
3231mptex 7081 . . 3 (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )) ∈ V
3315, 29, 30, 32ovmpo 7411 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 normOpOLD 𝑊) = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
341, 33syl5eq 2791 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  m cmap 8573  supcsup 9129  1c1 10803  *cxr 10939   < clt 10940  cle 10941  NrmCVeccnv 28847  BaseSetcba 28849  normCVcnmcv 28853   normOpOLD cnmoo 29004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-sup 9131  df-nmoo 29008
This theorem is referenced by:  nmooval  29026  hhnmoi  30164
  Copyright terms: Public domain W3C validator