Step | Hyp | Ref
| Expression |
1 | | nmoofval.6 |
. 2
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
2 | | fveq2 6774 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈)) |
3 | | nmoofval.1 |
. . . . . 6
⊢ 𝑋 = (BaseSet‘𝑈) |
4 | 2, 3 | eqtr4di 2796 |
. . . . 5
⊢ (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋) |
5 | 4 | oveq2d 7291 |
. . . 4
⊢ (𝑢 = 𝑈 → ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) = ((BaseSet‘𝑤) ↑m 𝑋)) |
6 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑈 → (normCV‘𝑢) =
(normCV‘𝑈)) |
7 | | nmoofval.3 |
. . . . . . . . . . 11
⊢ 𝐿 =
(normCV‘𝑈) |
8 | 6, 7 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑈 → (normCV‘𝑢) = 𝐿) |
9 | 8 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑢 = 𝑈 → ((normCV‘𝑢)‘𝑧) = (𝐿‘𝑧)) |
10 | 9 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑢 = 𝑈 → (((normCV‘𝑢)‘𝑧) ≤ 1 ↔ (𝐿‘𝑧) ≤ 1)) |
11 | 10 | anbi1d 630 |
. . . . . . 7
⊢ (𝑢 = 𝑈 → ((((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧))) ↔ ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧))))) |
12 | 4, 11 | rexeqbidv 3337 |
. . . . . 6
⊢ (𝑢 = 𝑈 → (∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧))) ↔ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧))))) |
13 | 12 | abbidv 2807 |
. . . . 5
⊢ (𝑢 = 𝑈 → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))} = {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}) |
14 | 13 | supeq1d 9205 |
. . . 4
⊢ (𝑢 = 𝑈 → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, < ) =
sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, <
)) |
15 | 5, 14 | mpteq12dv 5165 |
. . 3
⊢ (𝑢 = 𝑈 → (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, < )) = (𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, <
))) |
16 | | fveq2 6774 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (BaseSet‘𝑤) = (BaseSet‘𝑊)) |
17 | | nmoofval.2 |
. . . . . 6
⊢ 𝑌 = (BaseSet‘𝑊) |
18 | 16, 17 | eqtr4di 2796 |
. . . . 5
⊢ (𝑤 = 𝑊 → (BaseSet‘𝑤) = 𝑌) |
19 | 18 | oveq1d 7290 |
. . . 4
⊢ (𝑤 = 𝑊 → ((BaseSet‘𝑤) ↑m 𝑋) = (𝑌 ↑m 𝑋)) |
20 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (normCV‘𝑤) =
(normCV‘𝑊)) |
21 | | nmoofval.4 |
. . . . . . . . . . 11
⊢ 𝑀 =
(normCV‘𝑊) |
22 | 20, 21 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (normCV‘𝑤) = 𝑀) |
23 | 22 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((normCV‘𝑤)‘(𝑡‘𝑧)) = (𝑀‘(𝑡‘𝑧))) |
24 | 23 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)) ↔ 𝑥 = (𝑀‘(𝑡‘𝑧)))) |
25 | 24 | anbi2d 629 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧))) ↔ ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))))) |
26 | 25 | rexbidv 3226 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧))) ↔ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧))))) |
27 | 26 | abbidv 2807 |
. . . . 5
⊢ (𝑤 = 𝑊 → {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))} = {𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}) |
28 | 27 | supeq1d 9205 |
. . . 4
⊢ (𝑤 = 𝑊 → sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, < ) =
sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, <
)) |
29 | 19, 28 | mpteq12dv 5165 |
. . 3
⊢ (𝑤 = 𝑊 → (𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, <
))) |
30 | | df-nmoo 29107 |
. . 3
⊢
normOpOLD = (𝑢
∈ NrmCVec, 𝑤 ∈
NrmCVec ↦ (𝑡 ∈
((BaseSet‘𝑤)
↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, <
))) |
31 | | ovex 7308 |
. . . 4
⊢ (𝑌 ↑m 𝑋) ∈ V |
32 | 31 | mptex 7099 |
. . 3
⊢ (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, < )) ∈
V |
33 | 15, 29, 30, 32 | ovmpo 7433 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 normOpOLD 𝑊) = (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, <
))) |
34 | 1, 33 | eqtrid 2790 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌 ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧 ∈ 𝑋 ((𝐿‘𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡‘𝑧)))}, ℝ*, <
))) |