MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoofval Structured version   Visualization version   GIF version

Theorem nmoofval 30724
Description: The operator norm function. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoofval.1 𝑋 = (BaseSet‘𝑈)
nmoofval.2 𝑌 = (BaseSet‘𝑊)
nmoofval.3 𝐿 = (normCV𝑈)
nmoofval.4 𝑀 = (normCV𝑊)
nmoofval.6 𝑁 = (𝑈 normOpOLD 𝑊)
Assertion
Ref Expression
nmoofval ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
Distinct variable groups:   𝑥,𝑡,𝑧,𝑈   𝑡,𝑊,𝑥,𝑧   𝑡,𝑋,𝑧   𝑡,𝑌,𝑥   𝑡,𝐿   𝑡,𝑀
Allowed substitution hints:   𝐿(𝑥,𝑧)   𝑀(𝑥,𝑧)   𝑁(𝑥,𝑧,𝑡)   𝑋(𝑥)   𝑌(𝑧)

Proof of Theorem nmoofval
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmoofval.6 . 2 𝑁 = (𝑈 normOpOLD 𝑊)
2 fveq2 6826 . . . . . 6 (𝑢 = 𝑈 → (BaseSet‘𝑢) = (BaseSet‘𝑈))
3 nmoofval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
42, 3eqtr4di 2782 . . . . 5 (𝑢 = 𝑈 → (BaseSet‘𝑢) = 𝑋)
54oveq2d 7369 . . . 4 (𝑢 = 𝑈 → ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) = ((BaseSet‘𝑤) ↑m 𝑋))
6 fveq2 6826 . . . . . . . . . . 11 (𝑢 = 𝑈 → (normCV𝑢) = (normCV𝑈))
7 nmoofval.3 . . . . . . . . . . 11 𝐿 = (normCV𝑈)
86, 7eqtr4di 2782 . . . . . . . . . 10 (𝑢 = 𝑈 → (normCV𝑢) = 𝐿)
98fveq1d 6828 . . . . . . . . 9 (𝑢 = 𝑈 → ((normCV𝑢)‘𝑧) = (𝐿𝑧))
109breq1d 5105 . . . . . . . 8 (𝑢 = 𝑈 → (((normCV𝑢)‘𝑧) ≤ 1 ↔ (𝐿𝑧) ≤ 1))
1110anbi1d 631 . . . . . . 7 (𝑢 = 𝑈 → ((((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))))
124, 11rexeqbidv 3311 . . . . . 6 (𝑢 = 𝑈 → (∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))))
1312abbidv 2795 . . . . 5 (𝑢 = 𝑈 → {𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))})
1413supeq1d 9355 . . . 4 (𝑢 = 𝑈 → sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ))
155, 14mpteq12dv 5182 . . 3 (𝑢 = 𝑈 → (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
16 fveq2 6826 . . . . . 6 (𝑤 = 𝑊 → (BaseSet‘𝑤) = (BaseSet‘𝑊))
17 nmoofval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
1816, 17eqtr4di 2782 . . . . 5 (𝑤 = 𝑊 → (BaseSet‘𝑤) = 𝑌)
1918oveq1d 7368 . . . 4 (𝑤 = 𝑊 → ((BaseSet‘𝑤) ↑m 𝑋) = (𝑌m 𝑋))
20 fveq2 6826 . . . . . . . . . . 11 (𝑤 = 𝑊 → (normCV𝑤) = (normCV𝑊))
21 nmoofval.4 . . . . . . . . . . 11 𝑀 = (normCV𝑊)
2220, 21eqtr4di 2782 . . . . . . . . . 10 (𝑤 = 𝑊 → (normCV𝑤) = 𝑀)
2322fveq1d 6828 . . . . . . . . 9 (𝑤 = 𝑊 → ((normCV𝑤)‘(𝑡𝑧)) = (𝑀‘(𝑡𝑧)))
2423eqeq2d 2740 . . . . . . . 8 (𝑤 = 𝑊 → (𝑥 = ((normCV𝑤)‘(𝑡𝑧)) ↔ 𝑥 = (𝑀‘(𝑡𝑧))))
2524anbi2d 630 . . . . . . 7 (𝑤 = 𝑊 → (((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))))
2625rexbidv 3153 . . . . . 6 (𝑤 = 𝑊 → (∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧))) ↔ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))))
2726abbidv 2795 . . . . 5 (𝑤 = 𝑊 → {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))} = {𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))})
2827supeq1d 9355 . . . 4 (𝑤 = 𝑊 → sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < ))
2919, 28mpteq12dv 5182 . . 3 (𝑤 = 𝑊 → (𝑡 ∈ ((BaseSet‘𝑤) ↑m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )) = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
30 df-nmoo 30707 . . 3 normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
31 ovex 7386 . . . 4 (𝑌m 𝑋) ∈ V
3231mptex 7163 . . 3 (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )) ∈ V
3315, 29, 30, 32ovmpo 7513 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 normOpOLD 𝑊) = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
341, 33eqtrid 2776 1 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑁 = (𝑡 ∈ (𝑌m 𝑋) ↦ sup({𝑥 ∣ ∃𝑧𝑋 ((𝐿𝑧) ≤ 1 ∧ 𝑥 = (𝑀‘(𝑡𝑧)))}, ℝ*, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  m cmap 8760  supcsup 9349  1c1 11029  *cxr 11167   < clt 11168  cle 11169  NrmCVeccnv 30546  BaseSetcba 30548  normCVcnmcv 30552   normOpOLD cnmoo 30703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-sup 9351  df-nmoo 30707
This theorem is referenced by:  nmooval  30725  hhnmoi  31863
  Copyright terms: Public domain W3C validator