MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-no Structured version   Visualization version   GIF version

Definition df-no 27705
Description: Define the class of surreal numbers. The surreal numbers are a proper class of numbers developed by John H. Conway and introduced by Donald Knuth in 1975. They form a proper class into which all ordered fields can be embedded. The approach we take to defining them was first introduced by Hary Gonshor, and is based on the conception of a "sign expansion" of a surreal number. We define the surreals as ordinal-indexed sequences of 1o and 2o, analogous to Gonshor's ( − ) and ( + ).

After introducing this definition, we will abstract away from it using axioms that Norman Alling developed in "Foundations of Analysis over Surreal Number Fields." This is done in an effort to be agnostic towards the exact implementation of surreals. (Contributed by Scott Fenton, 9-Jun-2011.)

Assertion
Ref Expression
df-no No = {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}}
Distinct variable group:   𝑓,𝑎

Detailed syntax breakdown of Definition df-no
StepHypRef Expression
1 csur 27702 . 2 class No
2 va . . . . . 6 setvar 𝑎
32cv 1536 . . . . 5 class 𝑎
4 c1o 8515 . . . . . 6 class 1o
5 c2o 8516 . . . . . 6 class 2o
64, 5cpr 4650 . . . . 5 class {1o, 2o}
7 vf . . . . . 6 setvar 𝑓
87cv 1536 . . . . 5 class 𝑓
93, 6, 8wf 6569 . . . 4 wff 𝑓:𝑎⟶{1o, 2o}
10 con0 6395 . . . 4 class On
119, 2, 10wrex 3076 . . 3 wff 𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}
1211, 7cab 2717 . 2 class {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}}
131, 12wceq 1537 1 wff No = {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}}
Colors of variables: wff setvar class
This definition is referenced by:  elno  27708  elnoOLD  27709  sltso  27739  dfno2  43390
  Copyright terms: Public domain W3C validator