Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfno2 Structured version   Visualization version   GIF version

Theorem dfno2 43095
Description: A surreal number, in the functional sign expansion representation, is a function which maps from an ordinal into a set of two possible signs. (Contributed by RP, 12-Jan-2025.)
Assertion
Ref Expression
dfno2 No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)}

Proof of Theorem dfno2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6756 . . . . . . . . 9 (𝑓:𝑥⟶{1o, 2o} → 𝑓 ⊆ (𝑥 × {1o, 2o}))
21adantl 480 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ⊆ (𝑥 × {1o, 2o}))
3 onss 7793 . . . . . . . . . 10 (𝑥 ∈ On → 𝑥 ⊆ On)
43adantr 479 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑥 ⊆ On)
5 xpss1 5701 . . . . . . . . 9 (𝑥 ⊆ On → (𝑥 × {1o, 2o}) ⊆ (On × {1o, 2o}))
64, 5syl 17 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → (𝑥 × {1o, 2o}) ⊆ (On × {1o, 2o}))
72, 6sstrd 3990 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ⊆ (On × {1o, 2o}))
8 velpw 4612 . . . . . . 7 (𝑓 ∈ 𝒫 (On × {1o, 2o}) ↔ 𝑓 ⊆ (On × {1o, 2o}))
97, 8sylibr 233 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ∈ 𝒫 (On × {1o, 2o}))
10 ffun 6731 . . . . . . 7 (𝑓:𝑥⟶{1o, 2o} → Fun 𝑓)
1110adantl 480 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → Fun 𝑓)
12 fdm 6737 . . . . . . . 8 (𝑓:𝑥⟶{1o, 2o} → dom 𝑓 = 𝑥)
1312adantl 480 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → dom 𝑓 = 𝑥)
14 simpl 481 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑥 ∈ On)
1513, 14eqeltrd 2826 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → dom 𝑓 ∈ On)
169, 11, 15jca32 514 . . . . 5 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
1716rexlimiva 3137 . . . 4 (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} → (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
18 simprr 771 . . . . 5 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → dom 𝑓 ∈ On)
19 feq2 6710 . . . . . 6 (𝑥 = dom 𝑓 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝑓:dom 𝑓⟶{1o, 2o}))
2019adantl 480 . . . . 5 (((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) ∧ 𝑥 = dom 𝑓) → (𝑓:𝑥⟶{1o, 2o} ↔ 𝑓:dom 𝑓⟶{1o, 2o}))
21 simpl 481 . . . . . 6 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → Fun 𝑓)
22 elpwi 4614 . . . . . 6 (𝑓 ∈ 𝒫 (On × {1o, 2o}) → 𝑓 ⊆ (On × {1o, 2o}))
23 funssxp 6757 . . . . . . 7 ((Fun 𝑓𝑓 ⊆ (On × {1o, 2o})) ↔ (𝑓:dom 𝑓⟶{1o, 2o} ∧ dom 𝑓 ⊆ On))
2423simplbi 496 . . . . . 6 ((Fun 𝑓𝑓 ⊆ (On × {1o, 2o})) → 𝑓:dom 𝑓⟶{1o, 2o})
2521, 22, 24syl2anr 595 . . . . 5 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → 𝑓:dom 𝑓⟶{1o, 2o})
2618, 20, 25rspcedvd 3610 . . . 4 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o})
2717, 26impbii 208 . . 3 (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
2827abbii 2796 . 2 {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} = {𝑓 ∣ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On))}
29 df-no 27672 . 2 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
30 df-rab 3420 . 2 {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)} = {𝑓 ∣ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On))}
3128, 29, 303eqtr4i 2764 1 No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1534  wcel 2099  {cab 2703  wrex 3060  {crab 3419  wss 3947  𝒫 cpw 4607  {cpr 4635   × cxp 5680  dom cdm 5682  Oncon0 6376  Fun wfun 6548  wf 6550  1oc1o 8489  2oc2o 8490   No csur 27669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-tr 5271  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-dm 5692  df-rn 5693  df-ord 6379  df-on 6380  df-fun 6556  df-fn 6557  df-f 6558  df-no 27672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator