Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfno2 Structured version   Visualization version   GIF version

Theorem dfno2 43390
Description: A surreal number, in the functional sign expansion representation, is a function which maps from an ordinal into a set of two possible signs. (Contributed by RP, 12-Jan-2025.)
Assertion
Ref Expression
dfno2 No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)}

Proof of Theorem dfno2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6697 . . . . . . . . 9 (𝑓:𝑥⟶{1o, 2o} → 𝑓 ⊆ (𝑥 × {1o, 2o}))
21adantl 481 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ⊆ (𝑥 × {1o, 2o}))
3 onss 7741 . . . . . . . . . 10 (𝑥 ∈ On → 𝑥 ⊆ On)
43adantr 480 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑥 ⊆ On)
5 xpss1 5650 . . . . . . . . 9 (𝑥 ⊆ On → (𝑥 × {1o, 2o}) ⊆ (On × {1o, 2o}))
64, 5syl 17 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → (𝑥 × {1o, 2o}) ⊆ (On × {1o, 2o}))
72, 6sstrd 3954 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ⊆ (On × {1o, 2o}))
8 velpw 4564 . . . . . . 7 (𝑓 ∈ 𝒫 (On × {1o, 2o}) ↔ 𝑓 ⊆ (On × {1o, 2o}))
97, 8sylibr 234 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ∈ 𝒫 (On × {1o, 2o}))
10 ffun 6673 . . . . . . 7 (𝑓:𝑥⟶{1o, 2o} → Fun 𝑓)
1110adantl 481 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → Fun 𝑓)
12 fdm 6679 . . . . . . . 8 (𝑓:𝑥⟶{1o, 2o} → dom 𝑓 = 𝑥)
1312adantl 481 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → dom 𝑓 = 𝑥)
14 simpl 482 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑥 ∈ On)
1513, 14eqeltrd 2828 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → dom 𝑓 ∈ On)
169, 11, 15jca32 515 . . . . 5 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
1716rexlimiva 3126 . . . 4 (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} → (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
18 simprr 772 . . . . 5 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → dom 𝑓 ∈ On)
19 feq2 6649 . . . . . 6 (𝑥 = dom 𝑓 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝑓:dom 𝑓⟶{1o, 2o}))
2019adantl 481 . . . . 5 (((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) ∧ 𝑥 = dom 𝑓) → (𝑓:𝑥⟶{1o, 2o} ↔ 𝑓:dom 𝑓⟶{1o, 2o}))
21 simpl 482 . . . . . 6 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → Fun 𝑓)
22 elpwi 4566 . . . . . 6 (𝑓 ∈ 𝒫 (On × {1o, 2o}) → 𝑓 ⊆ (On × {1o, 2o}))
23 funssxp 6698 . . . . . . 7 ((Fun 𝑓𝑓 ⊆ (On × {1o, 2o})) ↔ (𝑓:dom 𝑓⟶{1o, 2o} ∧ dom 𝑓 ⊆ On))
2423simplbi 497 . . . . . 6 ((Fun 𝑓𝑓 ⊆ (On × {1o, 2o})) → 𝑓:dom 𝑓⟶{1o, 2o})
2521, 22, 24syl2anr 597 . . . . 5 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → 𝑓:dom 𝑓⟶{1o, 2o})
2618, 20, 25rspcedvd 3587 . . . 4 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o})
2717, 26impbii 209 . . 3 (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
2827abbii 2796 . 2 {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} = {𝑓 ∣ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On))}
29 df-no 27530 . 2 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
30 df-rab 3403 . 2 {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)} = {𝑓 ∣ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On))}
3128, 29, 303eqtr4i 2762 1 No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3402  wss 3911  𝒫 cpw 4559  {cpr 4587   × cxp 5629  dom cdm 5631  Oncon0 6320  Fun wfun 6493  wf 6495  1oc1o 8404  2oc2o 8405   No csur 27527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-ord 6323  df-on 6324  df-fun 6501  df-fn 6502  df-f 6503  df-no 27530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator