Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfno2 Structured version   Visualization version   GIF version

Theorem dfno2 41774
Description: A surreal number, in the functional sign expansion representation, is a function which maps from an ordinal into a set of two possible signs. (Contributed by RP, 12-Jan-2025.)
Assertion
Ref Expression
dfno2 No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)}

Proof of Theorem dfno2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6701 . . . . . . . . 9 (𝑓:𝑥⟶{1o, 2o} → 𝑓 ⊆ (𝑥 × {1o, 2o}))
21adantl 483 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ⊆ (𝑥 × {1o, 2o}))
3 onss 7724 . . . . . . . . . 10 (𝑥 ∈ On → 𝑥 ⊆ On)
43adantr 482 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑥 ⊆ On)
5 xpss1 5657 . . . . . . . . 9 (𝑥 ⊆ On → (𝑥 × {1o, 2o}) ⊆ (On × {1o, 2o}))
64, 5syl 17 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → (𝑥 × {1o, 2o}) ⊆ (On × {1o, 2o}))
72, 6sstrd 3959 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ⊆ (On × {1o, 2o}))
8 velpw 4570 . . . . . . 7 (𝑓 ∈ 𝒫 (On × {1o, 2o}) ↔ 𝑓 ⊆ (On × {1o, 2o}))
97, 8sylibr 233 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ∈ 𝒫 (On × {1o, 2o}))
10 ffun 6676 . . . . . . 7 (𝑓:𝑥⟶{1o, 2o} → Fun 𝑓)
1110adantl 483 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → Fun 𝑓)
12 fdm 6682 . . . . . . . 8 (𝑓:𝑥⟶{1o, 2o} → dom 𝑓 = 𝑥)
1312adantl 483 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → dom 𝑓 = 𝑥)
14 simpl 484 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑥 ∈ On)
1513, 14eqeltrd 2838 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → dom 𝑓 ∈ On)
169, 11, 15jca32 517 . . . . 5 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
1716rexlimiva 3145 . . . 4 (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} → (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
18 simprr 772 . . . . 5 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → dom 𝑓 ∈ On)
19 feq2 6655 . . . . . 6 (𝑥 = dom 𝑓 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝑓:dom 𝑓⟶{1o, 2o}))
2019adantl 483 . . . . 5 (((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) ∧ 𝑥 = dom 𝑓) → (𝑓:𝑥⟶{1o, 2o} ↔ 𝑓:dom 𝑓⟶{1o, 2o}))
21 simpl 484 . . . . . 6 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → Fun 𝑓)
22 elpwi 4572 . . . . . 6 (𝑓 ∈ 𝒫 (On × {1o, 2o}) → 𝑓 ⊆ (On × {1o, 2o}))
23 funssxp 6702 . . . . . . 7 ((Fun 𝑓𝑓 ⊆ (On × {1o, 2o})) ↔ (𝑓:dom 𝑓⟶{1o, 2o} ∧ dom 𝑓 ⊆ On))
2423simplbi 499 . . . . . 6 ((Fun 𝑓𝑓 ⊆ (On × {1o, 2o})) → 𝑓:dom 𝑓⟶{1o, 2o})
2521, 22, 24syl2anr 598 . . . . 5 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → 𝑓:dom 𝑓⟶{1o, 2o})
2618, 20, 25rspcedvd 3586 . . . 4 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o})
2717, 26impbii 208 . . 3 (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
2827abbii 2807 . 2 {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} = {𝑓 ∣ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On))}
29 df-no 27007 . 2 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
30 df-rab 3411 . 2 {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)} = {𝑓 ∣ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On))}
3128, 29, 303eqtr4i 2775 1 No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2714  wrex 3074  {crab 3410  wss 3915  𝒫 cpw 4565  {cpr 4593   × cxp 5636  dom cdm 5638  Oncon0 6322  Fun wfun 6495  wf 6497  1oc1o 8410  2oc2o 8411   No csur 27004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-ord 6325  df-on 6326  df-fun 6503  df-fn 6504  df-f 6505  df-no 27007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator