Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfno2 Structured version   Visualization version   GIF version

Theorem dfno2 43417
Description: A surreal number, in the functional sign expansion representation, is a function which maps from an ordinal into a set of two possible signs. (Contributed by RP, 12-Jan-2025.)
Assertion
Ref Expression
dfno2 No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)}

Proof of Theorem dfno2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fssxp 6715 . . . . . . . . 9 (𝑓:𝑥⟶{1o, 2o} → 𝑓 ⊆ (𝑥 × {1o, 2o}))
21adantl 481 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ⊆ (𝑥 × {1o, 2o}))
3 onss 7761 . . . . . . . . . 10 (𝑥 ∈ On → 𝑥 ⊆ On)
43adantr 480 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑥 ⊆ On)
5 xpss1 5657 . . . . . . . . 9 (𝑥 ⊆ On → (𝑥 × {1o, 2o}) ⊆ (On × {1o, 2o}))
64, 5syl 17 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → (𝑥 × {1o, 2o}) ⊆ (On × {1o, 2o}))
72, 6sstrd 3957 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ⊆ (On × {1o, 2o}))
8 velpw 4568 . . . . . . 7 (𝑓 ∈ 𝒫 (On × {1o, 2o}) ↔ 𝑓 ⊆ (On × {1o, 2o}))
97, 8sylibr 234 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑓 ∈ 𝒫 (On × {1o, 2o}))
10 ffun 6691 . . . . . . 7 (𝑓:𝑥⟶{1o, 2o} → Fun 𝑓)
1110adantl 481 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → Fun 𝑓)
12 fdm 6697 . . . . . . . 8 (𝑓:𝑥⟶{1o, 2o} → dom 𝑓 = 𝑥)
1312adantl 481 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → dom 𝑓 = 𝑥)
14 simpl 482 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → 𝑥 ∈ On)
1513, 14eqeltrd 2828 . . . . . 6 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → dom 𝑓 ∈ On)
169, 11, 15jca32 515 . . . . 5 ((𝑥 ∈ On ∧ 𝑓:𝑥⟶{1o, 2o}) → (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
1716rexlimiva 3126 . . . 4 (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} → (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
18 simprr 772 . . . . 5 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → dom 𝑓 ∈ On)
19 feq2 6667 . . . . . 6 (𝑥 = dom 𝑓 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝑓:dom 𝑓⟶{1o, 2o}))
2019adantl 481 . . . . 5 (((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) ∧ 𝑥 = dom 𝑓) → (𝑓:𝑥⟶{1o, 2o} ↔ 𝑓:dom 𝑓⟶{1o, 2o}))
21 simpl 482 . . . . . 6 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → Fun 𝑓)
22 elpwi 4570 . . . . . 6 (𝑓 ∈ 𝒫 (On × {1o, 2o}) → 𝑓 ⊆ (On × {1o, 2o}))
23 funssxp 6716 . . . . . . 7 ((Fun 𝑓𝑓 ⊆ (On × {1o, 2o})) ↔ (𝑓:dom 𝑓⟶{1o, 2o} ∧ dom 𝑓 ⊆ On))
2423simplbi 497 . . . . . 6 ((Fun 𝑓𝑓 ⊆ (On × {1o, 2o})) → 𝑓:dom 𝑓⟶{1o, 2o})
2521, 22, 24syl2anr 597 . . . . 5 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → 𝑓:dom 𝑓⟶{1o, 2o})
2618, 20, 25rspcedvd 3590 . . . 4 ((𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)) → ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o})
2717, 26impbii 209 . . 3 (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On)))
2827abbii 2796 . 2 {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} = {𝑓 ∣ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On))}
29 df-no 27554 . 2 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
30 df-rab 3406 . 2 {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)} = {𝑓 ∣ (𝑓 ∈ 𝒫 (On × {1o, 2o}) ∧ (Fun 𝑓 ∧ dom 𝑓 ∈ On))}
3128, 29, 303eqtr4i 2762 1 No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3405  wss 3914  𝒫 cpw 4563  {cpr 4591   × cxp 5636  dom cdm 5638  Oncon0 6332  Fun wfun 6505  wf 6507  1oc1o 8427  2oc2o 8428   No csur 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-ord 6335  df-on 6336  df-fun 6513  df-fn 6514  df-f 6515  df-no 27554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator