| Metamath
Proof Explorer Theorem List (p. 274 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | gausslemma2dlem0g 27301 | Auxiliary lemma 7 for gausslemma2d 27313. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) ⇒ ⊢ (𝜑 → 𝑀 ≤ 𝐻) | ||
| Theorem | gausslemma2dlem0h 27302 | Auxiliary lemma 8 for gausslemma2d 27313. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ0) | ||
| Theorem | gausslemma2dlem0i 27303 | Auxiliary lemma 9 for gausslemma2d 27313. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))) | ||
| Theorem | gausslemma2dlem1a 27304* | Lemma for gausslemma2dlem1 27305. (Contributed by AV, 1-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → ran 𝑅 = (1...𝐻)) | ||
| Theorem | gausslemma2dlem1 27305* | Lemma 1 for gausslemma2d 27313. (Contributed by AV, 5-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) ⇒ ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) | ||
| Theorem | gausslemma2dlem2 27306* | Lemma 2 for gausslemma2d 27313. (Contributed by AV, 4-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅‘𝑘) = (𝑘 · 2)) | ||
| Theorem | gausslemma2dlem3 27307* | Lemma 3 for gausslemma2d 27313. (Contributed by AV, 4-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) = (𝑃 − (𝑘 · 2))) | ||
| Theorem | gausslemma2dlem4 27308* | Lemma 4 for gausslemma2d 27313. (Contributed by AV, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅‘𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘))) | ||
| Theorem | gausslemma2dlem5a 27309* | Lemma for gausslemma2dlem5 27310. (Contributed by AV, 8-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(-1 · (𝑘 · 2)) mod 𝑃)) | ||
| Theorem | gausslemma2dlem5 27310* | Lemma 5 for gausslemma2d 27313. (Contributed by AV, 9-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅‘𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) | ||
| Theorem | gausslemma2dlem6 27311* | Lemma 6 for gausslemma2d 27313. (Contributed by AV, 16-Jun-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) | ||
| Theorem | gausslemma2dlem7 27312* | Lemma 7 for gausslemma2d 27313. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) | ||
| Theorem | gausslemma2d 27313* | Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ 𝐻 = ((𝑃 − 1) / 2) & ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) & ⊢ 𝑀 = (⌊‘(𝑃 / 4)) & ⊢ 𝑁 = (𝐻 − 𝑀) ⇒ ⊢ (𝜑 → (2 /L 𝑃) = (-1↑𝑁)) | ||
| Theorem | lgseisenlem1 27314* | Lemma for lgseisen 27318. If 𝑅(𝑢) = (𝑄 · 𝑢) mod 𝑃 and 𝑀(𝑢) = (-1↑𝑅(𝑢)) · 𝑅(𝑢), then for any even 1 ≤ 𝑢 ≤ 𝑃 − 1, 𝑀(𝑢) is also an even integer 1 ≤ 𝑀(𝑢) ≤ 𝑃 − 1. To simplify these statements, we divide all the even numbers by 2, so that it becomes the statement that 𝑀(𝑥 / 2) = (-1↑𝑅(𝑥 / 2)) · 𝑅(𝑥 / 2) / 2 is an integer between 1 and (𝑃 − 1) / 2. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) ⇒ ⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2))) | ||
| Theorem | lgseisenlem2 27315* | Lemma for lgseisen 27318. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) ⇒ ⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2))) | ||
| Theorem | lgseisenlem3 27316* | Lemma for lgseisen 27318. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) & ⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r‘𝑌)) | ||
| Theorem | lgseisenlem4 27317* | Lemma for lgseisen 27318. (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) & ⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) & ⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) & ⊢ 𝑌 = (ℤ/nℤ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑌) & ⊢ 𝐿 = (ℤRHom‘𝑌) ⇒ ⊢ (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) | ||
| Theorem | lgseisen 27318* | Eisenstein's lemma, an expression for (𝑃 /L 𝑄) when 𝑃, 𝑄 are distinct odd primes. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) ⇒ ⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) | ||
| Theorem | lgsquadlem1 27319* | Lemma for lgsquad 27322. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st ‘𝑧)}))) | ||
| Theorem | lgsquadlem2 27320* | Lemma for lgsquad 27322. Count the members of 𝑆 with even coordinates, and combine with lgsquadlem1 27319 to get the total count of lattice points in 𝑆 (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆))) | ||
| Theorem | lgsquadlem3 27321* | Lemma for lgsquad 27322. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑄 ∈ (ℙ ∖ {2})) & ⊢ (𝜑 → 𝑃 ≠ 𝑄) & ⊢ 𝑀 = ((𝑃 − 1) / 2) & ⊢ 𝑁 = ((𝑄 − 1) / 2) & ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⇒ ⊢ (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁))) | ||
| Theorem | lgsquad 27322 | The Law of Quadratic Reciprocity, see also theorem 9.8 in [ApostolNT] p. 185. If 𝑃 and 𝑄 are distinct odd primes, then the product of the Legendre symbols (𝑃 /L 𝑄) and (𝑄 /L 𝑃) is the parity of ((𝑃 − 1) / 2) · ((𝑄 − 1) / 2). This uses Eisenstein's proof, which also has a nice geometric interpretation - see https://en.wikipedia.org/wiki/Proofs_of_quadratic_reciprocity. This is Metamath 100 proof #7. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑄 ∈ (ℙ ∖ {2}) ∧ 𝑃 ≠ 𝑄) → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(((𝑃 − 1) / 2) · ((𝑄 − 1) / 2)))) | ||
| Theorem | lgsquad2lem1 27323 | Lemma for lgsquad2 27325. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (𝐴 · 𝐵) = 𝑀) & ⊢ (𝜑 → ((𝐴 /L 𝑁) · (𝑁 /L 𝐴)) = (-1↑(((𝐴 − 1) / 2) · ((𝑁 − 1) / 2)))) & ⊢ (𝜑 → ((𝐵 /L 𝑁) · (𝑁 /L 𝐵)) = (-1↑(((𝐵 − 1) / 2) · ((𝑁 − 1) / 2)))) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||
| Theorem | lgsquad2lem2 27324* | Lemma for lgsquad2 27325. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) & ⊢ ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)))) & ⊢ (𝜓 ↔ ∀𝑥 ∈ (1...𝑘)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2))))) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||
| Theorem | lgsquad2 27325 | Extend lgsquad 27322 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑀) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) & ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) ⇒ ⊢ (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2)))) | ||
| Theorem | lgsquad3 27326 | Extend lgsquad2 27325 to integers which share a factor. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (((𝑀 ∈ ℕ ∧ ¬ 2 ∥ 𝑀) ∧ (𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁)) → (𝑀 /L 𝑁) = ((-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))) · (𝑁 /L 𝑀))) | ||
| Theorem | m1lgs 27327 | The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime 𝑃 iff 𝑃≡1 (mod 4). See first case of theorem 9.4 in [ApostolNT] p. 181. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((-1 /L 𝑃) = 1 ↔ (𝑃 mod 4) = 1)) | ||
| Theorem | 2lgslem1a1 27328* | Lemma 1 for 2lgslem1a 27330. (Contributed by AV, 16-Jun-2021.) |
| ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃)) | ||
| Theorem | 2lgslem1a2 27329 | Lemma 2 for 2lgslem1a 27330. (Contributed by AV, 18-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → ((⌊‘(𝑁 / 4)) < 𝐼 ↔ (𝑁 / 2) < (𝐼 · 2))) | ||
| Theorem | 2lgslem1a 27330* | Lemma 1 for 2lgslem1 27333. (Contributed by AV, 18-Jun-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}) | ||
| Theorem | 2lgslem1b 27331* | Lemma 2 for 2lgslem1 27333. (Contributed by AV, 18-Jun-2021.) |
| ⊢ 𝐼 = (𝐴...𝐵) & ⊢ 𝐹 = (𝑗 ∈ 𝐼 ↦ (𝑗 · 2)) ⇒ ⊢ 𝐹:𝐼–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ 𝐼 𝑥 = (𝑖 · 2)} | ||
| Theorem | 2lgslem1c 27332 | Lemma 3 for 2lgslem1 27333. (Contributed by AV, 19-Jun-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)) | ||
| Theorem | 2lgslem1 27333* | Lemma 1 for 2lgs 27346. (Contributed by AV, 19-Jun-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))) | ||
| Theorem | 2lgslem2 27334 | Lemma 2 for 2lgs 27346. (Contributed by AV, 20-Jun-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → 𝑁 ∈ ℤ) | ||
| Theorem | 2lgslem3a 27335 | Lemma for 2lgslem3a1 27339. (Contributed by AV, 14-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 1)) → 𝑁 = (2 · 𝐾)) | ||
| Theorem | 2lgslem3b 27336 | Lemma for 2lgslem3b1 27340. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 3)) → 𝑁 = ((2 · 𝐾) + 1)) | ||
| Theorem | 2lgslem3c 27337 | Lemma for 2lgslem3c1 27341. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 5)) → 𝑁 = ((2 · 𝐾) + 1)) | ||
| Theorem | 2lgslem3d 27338 | Lemma for 2lgslem3d1 27342. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑃 = ((8 · 𝐾) + 7)) → 𝑁 = ((2 · 𝐾) + 2)) | ||
| Theorem | 2lgslem3a1 27339 | Lemma 1 for 2lgslem3 27343. (Contributed by AV, 15-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) | ||
| Theorem | 2lgslem3b1 27340 | Lemma 2 for 2lgslem3 27343. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) | ||
| Theorem | 2lgslem3c1 27341 | Lemma 3 for 2lgslem3 27343. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) | ||
| Theorem | 2lgslem3d1 27342 | Lemma 4 for 2lgslem3 27343. (Contributed by AV, 15-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0) | ||
| Theorem | 2lgslem3 27343 | Lemma 3 for 2lgs 27346. (Contributed by AV, 16-Jul-2021.) |
| ⊢ 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))) ⇒ ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)) | ||
| Theorem | 2lgs2 27344 | The Legendre symbol for 2 at 2 is 0. (Contributed by AV, 20-Jun-2021.) |
| ⊢ (2 /L 2) = 0 | ||
| Theorem | 2lgslem4 27345 | Lemma 4 for 2lgs 27346: special case of 2lgs 27346 for 𝑃 = 2. (Contributed by AV, 20-Jun-2021.) |
| ⊢ ((2 /L 2) = 1 ↔ (2 mod 8) ∈ {1, 7}) | ||
| Theorem | 2lgs 27346 | The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime 𝑃 iff 𝑃≡±1 (mod 8), see first case of theorem 9.5 in [ApostolNT] p. 181. This theorem justifies our definition of (𝑁 /L 2) (lgs2 27253) to some degree, by demanding that reciprocity extend to the case 𝑄 = 2. (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021.) |
| ⊢ (𝑃 ∈ ℙ → ((2 /L 𝑃) = 1 ↔ (𝑃 mod 8) ∈ {1, 7})) | ||
| Theorem | 2lgsoddprmlem1 27347 | Lemma 1 for 2lgsoddprm 27355. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8))) | ||
| Theorem | 2lgsoddprmlem2 27348 | Lemma 2 for 2lgsoddprm 27355. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ 2 ∥ (((𝑅↑2) − 1) / 8))) | ||
| Theorem | 2lgsoddprmlem3a 27349 | Lemma 1 for 2lgsoddprmlem3 27353. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((1↑2) − 1) / 8) = 0 | ||
| Theorem | 2lgsoddprmlem3b 27350 | Lemma 2 for 2lgsoddprmlem3 27353. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((3↑2) − 1) / 8) = 1 | ||
| Theorem | 2lgsoddprmlem3c 27351 | Lemma 3 for 2lgsoddprmlem3 27353. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((5↑2) − 1) / 8) = 3 | ||
| Theorem | 2lgsoddprmlem3d 27352 | Lemma 4 for 2lgsoddprmlem3 27353. (Contributed by AV, 20-Jul-2021.) |
| ⊢ (((7↑2) − 1) / 8) = (2 · 3) | ||
| Theorem | 2lgsoddprmlem3 27353 | Lemma 3 for 2lgsoddprm 27355. (Contributed by AV, 20-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑅 = (𝑁 mod 8)) → (2 ∥ (((𝑅↑2) − 1) / 8) ↔ 𝑅 ∈ {1, 7})) | ||
| Theorem | 2lgsoddprmlem4 27354 | Lemma 4 for 2lgsoddprm 27355. (Contributed by AV, 20-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∥ (((𝑁↑2) − 1) / 8) ↔ (𝑁 mod 8) ∈ {1, 7})) | ||
| Theorem | 2lgsoddprm 27355 | The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for 2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ((2 /L 𝑃) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.) |
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (2 /L 𝑃) = (-1↑(((𝑃↑2) − 1) / 8))) | ||
| Theorem | 2sqlem1 27356* | Lemma for 2sq 27369. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) | ||
| Theorem | 2sqlem2 27357* | Lemma for 2sq 27369. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝐴 = ((𝑥↑2) + (𝑦↑2))) | ||
| Theorem | mul2sq 27358 | Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ⇒ ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) | ||
| Theorem | 2sqlem3 27359 | Lemma for 2sqlem5 27361. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) & ⊢ (𝜑 → 𝑃 ∥ ((𝐶 · 𝐵) + (𝐴 · 𝐷))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||
| Theorem | 2sqlem4 27360 | Lemma for 2sqlem5 27361. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → (𝑁 · 𝑃) = ((𝐴↑2) + (𝐵↑2))) & ⊢ (𝜑 → 𝑃 = ((𝐶↑2) + (𝐷↑2))) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||
| Theorem | 2sqlem5 27361 | Lemma for 2sq 27369. If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (𝑁 · 𝑃) ∈ 𝑆) & ⊢ (𝜑 → 𝑃 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝑁 ∈ 𝑆) | ||
| Theorem | 2sqlem6 27362* | Lemma for 2sq 27369. If a number that is a sum of two squares is divisible by a number whose prime divisors are all sums of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ 𝐵 → 𝑝 ∈ 𝑆)) & ⊢ (𝜑 → (𝐴 · 𝐵) ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑆) | ||
| Theorem | 2sqlem7 27363* | Lemma for 2sq 27369. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ 𝑌 ⊆ (𝑆 ∩ ℕ) | ||
| Theorem | 2sqlem8a 27364* | Lemma for 2sqlem8 27365. (Contributed by Mario Carneiro, 4-Jun-2016.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) ⇒ ⊢ (𝜑 → (𝐶 gcd 𝐷) ∈ ℕ) | ||
| Theorem | 2sqlem8 27365* | Lemma for 2sq 27369. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → 𝑁 = ((𝐴↑2) + (𝐵↑2))) & ⊢ 𝐶 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐷 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) & ⊢ 𝐸 = (𝐶 / (𝐶 gcd 𝐷)) & ⊢ 𝐹 = (𝐷 / (𝐶 gcd 𝐷)) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||
| Theorem | 2sqlem9 27366* | Lemma for 2sq 27369. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} & ⊢ (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎 ∈ 𝑌 (𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆)) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑆) | ||
| Theorem | 2sqlem10 27367* | Lemma for 2sq 27369. Every factor of a "proper" sum of two squares (where the summands are coprime) is a sum of two squares. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴) → 𝐵 ∈ 𝑆) | ||
| Theorem | 2sqlem11 27368* | Lemma for 2sq 27369. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) & ⊢ 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ 𝑆) | ||
| Theorem | 2sq 27369* | All primes of the form 4𝑘 + 1 are sums of two squares. This is Metamath 100 proof #20. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | ||
| Theorem | 2sqblem 27370 | Lemma for 2sqb 27371. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2)) & ⊢ (𝜑 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) & ⊢ (𝜑 → 𝑃 = ((𝑋↑2) + (𝑌↑2))) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → (𝑃 gcd 𝑌) = ((𝑃 · 𝐴) + (𝑌 · 𝐵))) ⇒ ⊢ (𝜑 → (𝑃 mod 4) = 1) | ||
| Theorem | 2sqb 27371* | The converse to 2sq 27369. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝑃 ∈ ℙ → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑃 = 2 ∨ (𝑃 mod 4) = 1))) | ||
| Theorem | 2sq2 27372 | 2 is the sum of squares of two nonnegative integers iff the two integers are 1. (Contributed by AV, 19-Jun-2023.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = 2 ↔ (𝐴 = 1 ∧ 𝐵 = 1))) | ||
| Theorem | 2sqn0 27373 | If the sum of two squares is prime, none of the original number is zero. (Contributed by Thierry Arnoux, 4-Feb-2020.) |
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
| Theorem | 2sqcoprm 27374 | If the sum of two squares is prime, the two original numbers are coprime. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | ||
| Theorem | 2sqmod 27375 | Given two decompositions of a prime as a sum of two squares, show that they are equal. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
| ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐶 ≤ 𝐷) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = 𝑃) & ⊢ (𝜑 → ((𝐶↑2) + (𝐷↑2)) = 𝑃) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | 2sqmo 27376* | There exists at most one decomposition of a prime as a sum of two squares. See 2sqb 27371 for the existence of such a decomposition. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
| ⊢ (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
| Theorem | 2sqnn0 27377* | All primes of the form 4𝑘 + 1 are sums of squares of two nonnegative integers. (Contributed by AV, 3-Jun-2023.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0 ∃𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2))) | ||
| Theorem | 2sqnn 27378* | All primes of the form 4𝑘 + 1 are sums of squares of two positive integers. (Contributed by AV, 11-Jun-2023.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))) | ||
| Theorem | addsq2reu 27379* |
For each complex number 𝐶, there exists a unique complex
number
𝑎 added to the square of a unique
another complex number 𝑏
resulting in the given complex number 𝐶. The unique complex number
𝑎 is 𝐶, and the unique another complex
number 𝑏 is 0.
Remark: This, together with addsqnreup 27382, is an example showing that the pattern ∃!𝑎 ∈ 𝐴∃!𝑏 ∈ 𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑). See also comments for df-eu 2566 and 2eu4 2652. For more details see comment for addsqnreup 27382. (Contributed by AV, 21-Jun-2023.) |
| ⊢ (𝐶 ∈ ℂ → ∃!𝑎 ∈ ℂ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
| Theorem | addsqn2reu 27380* |
For each complex number 𝐶, there does not exist a unique
complex
number 𝑏, squared and added to a unique
another complex number
𝑎 resulting in the given complex number
𝐶.
Actually, for each
complex number 𝑏, 𝑎 = (𝐶 − (𝑏↑2)) is unique.
Remark: This, together with addsq2reu 27379, shows that commutation of two unique quantifications need not be equivalent, and provides an evident justification of the fact that considering the pair of variables is necessary to obtain what we intuitively understand as "double unique existence". (Proposed by GL, 23-Jun-2023.). (Contributed by AV, 23-Jun-2023.) |
| ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑏 ∈ ℂ ∃!𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
| Theorem | addsqrexnreu 27381* |
For each complex number, there exists a complex number to which the
square of more than one (or no) other complex numbers can be added to
result in the given complex number.
Remark: This theorem, together with addsq2reu 27379, shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu 27379). For more details see comment for addsqnreup 27382. (Contributed by AV, 20-Jun-2023.) |
| ⊢ (𝐶 ∈ ℂ → ∃𝑎 ∈ ℂ ¬ ∃!𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
| Theorem | addsqnreup 27382* |
There is no unique decomposition of a complex number as a sum of a
complex number and a square of a complex number.
Remark: This theorem, together with addsq2reu 27379, is a real life example (about a numerical property) showing that the pattern ∃!𝑎 ∈ 𝐴∃!𝑏 ∈ 𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑"). See also comments for df-eu 2566 and 2eu4 2652. In the case of decompositions of complex numbers as a sum of a complex number and a square of a complex number, the only/unique complex number to which the square of a unique complex number is added yields in the given complex number is the given number itself, and the unique complex number to be squared is 0 (see comment for addsq2reu 27379). There are, however, complex numbers to which the square of more than one other complex numbers can be added to yield the given complex number (see addsqrexnreu 27381). For example, 〈1, (√‘(𝐶 − 1))〉 and 〈1, -(√‘(𝐶 − 1))〉 are two different decompositions of 𝐶 (if 𝐶 ≠ 1). Therefore, there is no unique decomposition of any complex number as a sum of a complex number and a square of a complex number, as generally proved by this theorem. As a consequence, a theorem must claim the existence of a unique pair of sets to express "There are unique 𝑎 and 𝑏 so that .." (more formally ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 with 𝑝 = 〈𝑎, 𝑏〉), or by showing (∃!𝑥 ∈ 𝐴∃𝑦 ∈ 𝐵𝜑 ∧ ∃!𝑦 ∈ 𝐵∃𝑥 ∈ 𝐴𝜑) (see 2reu4 4472 resp. 2eu4 2652). These two representations are equivalent (see opreu2reurex 6246). An analogon of this theorem using the latter variant is given in addsqn2reurex2 27384. In some cases, however, the variant with (ordered!) pairs may be possible only for ordered sets (like ℝ or ℙ) and claiming that the first component is less than or equal to the second component (see, for example, 2sqreunnltb 27400 and 2sqreuopb 27407). Alternatively, (proper) unordered pairs can be used: ∃!𝑝𝑒𝒫 𝐴((♯‘𝑝) = 2 ∧ 𝜑), or, using the definition of proper pairs: ∃!𝑝 ∈ (Pairsproper‘𝐴)𝜑 (see, for example, inlinecirc02preu 48913). (Contributed by AV, 21-Jun-2023.) |
| ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶) | ||
| Theorem | addsq2nreurex 27383* | For each complex number 𝐶, there is no unique complex number 𝑎 added to the square of another complex number 𝑏 resulting in the given complex number 𝐶. (Contributed by AV, 2-Jul-2023.) |
| ⊢ (𝐶 ∈ ℂ → ¬ ∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶) | ||
| Theorem | addsqn2reurex2 27384* |
For each complex number 𝐶, there does not uniquely exist two
complex numbers 𝑎 and 𝑏, with 𝑏 squared
and added to 𝑎
resulting in the given complex number 𝐶.
Remark: This, together with addsq2reu 27379, is an example showing that the pattern ∃!𝑎 ∈ 𝐴∃!𝑏 ∈ 𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑), as it is the case with the pattern (∃!𝑎 ∈ 𝐴∃𝑏 ∈ 𝐵𝜑 ∧ ∃!𝑏 ∈ 𝐵∃𝑎 ∈ 𝐴𝜑. See also comments for df-eu 2566 and 2eu4 2652. (Contributed by AV, 2-Jul-2023.) |
| ⊢ (𝐶 ∈ ℂ → ¬ (∃!𝑎 ∈ ℂ ∃𝑏 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶 ∧ ∃!𝑏 ∈ ℂ ∃𝑎 ∈ ℂ (𝑎 + (𝑏↑2)) = 𝐶)) | ||
| Theorem | 2sqreulem1 27385* | Lemma 1 for 2sqreu 27395. (Contributed by AV, 4-Jun-2023.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
| Theorem | 2sqreultlem 27386* | Lemma for 2sqreult 27397. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
| Theorem | 2sqreultblem 27387* | Lemma for 2sqreultb 27398. (Contributed by AV, 10-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.) |
| ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
| Theorem | 2sqreunnlem1 27388* | Lemma 1 for 2sqreunn 27396. (Contributed by AV, 11-Jun-2023.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
| Theorem | 2sqreunnltlem 27389* | Lemma for 2sqreunnlt 27399. (Contributed by AV, 4-Jun-2023.) Specialization to different integers, proposed by GL. (Revised by AV, 11-Jun-2023.) |
| ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) | ||
| Theorem | 2sqreunnltblem 27390* | Lemma for 2sqreunnltb 27400. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023.) |
| ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) | ||
| Theorem | 2sqreulem2 27391 | Lemma 2 for 2sqreu 27395 etc. (Contributed by AV, 25-Jun-2023.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (((𝐴↑2) + (𝐵↑2)) = ((𝐴↑2) + (𝐶↑2)) → 𝐵 = 𝐶)) | ||
| Theorem | 2sqreulem3 27392 | Lemma 3 for 2sqreu 27395 etc. (Contributed by AV, 25-Jun-2023.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0)) → (((𝜑 ∧ ((𝐴↑2) + (𝐵↑2)) = 𝑃) ∧ (𝜓 ∧ ((𝐴↑2) + (𝐶↑2)) = 𝑃)) → 𝐵 = 𝐶)) | ||
| Theorem | 2sqreulem4 27393* | Lemma 4 for 2sqreu 27395 et. (Contributed by AV, 25-Jun-2023.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ∀𝑎 ∈ ℕ0 ∃*𝑏 ∈ ℕ0 𝜑 | ||
| Theorem | 2sqreunnlem2 27394* | Lemma 2 for 2sqreunn 27396. (Contributed by AV, 25-Jun-2023.) |
| ⊢ (𝜑 ↔ (𝜓 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ∀𝑎 ∈ ℕ ∃*𝑏 ∈ ℕ 𝜑 | ||
| Theorem | 2sqreu 27395* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two nonnegative integers. See 2sqnn0 27377 for the existence of such a decomposition. (Contributed by AV, 4-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
| ⊢ (𝜑 ↔ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) | ||
| Theorem | 2sqreunn 27396* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two positive integers. See 2sqnn 27378 for the existence of such a decomposition. (Contributed by AV, 11-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
| ⊢ (𝜑 ↔ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)) | ||
| Theorem | 2sqreult 27397* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers. (Contributed by AV, 8-Jun-2023.) (Proposed by GL, 8-Jun-2023.) (Revised by AV, 25-Jun-2023.) |
| ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑)) | ||
| Theorem | 2sqreultb 27398* | There exists a unique decomposition of a prime as a sum of squares of two different nonnegative integers iff 𝑃≡1 (mod 4). (Contributed by AV, 10-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 25-Jun-2023.) |
| ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0 𝜑 ∧ ∃!𝑏 ∈ ℕ0 ∃𝑎 ∈ ℕ0 𝜑))) | ||
| Theorem | 2sqreunnlt 27399* | There exists a unique decomposition of a prime of the form 4𝑘 + 1 as a sum of squares of two different positive integers. (Contributed by AV, 4-Jun-2023.) Specialization to different integers, proposed by GL. (Revised by AV, 25-Jun-2023.) |
| ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑)) | ||
| Theorem | 2sqreunnltb 27400* | There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. (Contributed by AV, 11-Jun-2023.) The prime needs not be odd, as observed by WL. (Revised by AV, 25-Jun-2023.) |
| ⊢ (𝜑 ↔ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) ⇒ ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ (∃!𝑎 ∈ ℕ ∃𝑏 ∈ ℕ 𝜑 ∧ ∃!𝑏 ∈ ℕ ∃𝑎 ∈ ℕ 𝜑))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |