Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltso Structured version   Visualization version   GIF version

Theorem sltso 33879
Description: Surreal less than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.)
Assertion
Ref Expression
sltso <s Or No

Proof of Theorem sltso
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltsolem1 33878 . 2 {⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} Or ({1o, 2o} ∪ {∅})
2 df-no 33846 . 2 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
3 df-slt 33847 . 2 <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))}
4 nosgnn0 33861 . 2 ¬ ∅ ∈ {1o, 2o}
51, 2, 3, 4soseq 33803 1 <s Or No
Colors of variables: wff setvar class
Syntax hints:  c0 4256  {cpr 4563  {ctp 4565  cop 4567   Or wor 5502  1oc1o 8290  2oc2o 8291   No csur 33843   <s cslt 33844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847
This theorem is referenced by:  nosepne  33883  nosepdm  33887  nodenselem4  33890  nodenselem5  33891  nodenselem7  33893  nolt02o  33898  nogt01o  33899  noresle  33900  nomaxmo  33901  nominmo  33902  nosupprefixmo  33903  noinfprefixmo  33904  nosupbnd1lem1  33911  nosupbnd1lem2  33912  nosupbnd1lem4  33914  nosupbnd1lem6  33916  nosupbnd1  33917  nosupbnd2lem1  33918  nosupbnd2  33919  noinfbnd1lem1  33926  noinfbnd1lem2  33927  noinfbnd1lem4  33929  noinfbnd1lem6  33931  noinfbnd1  33932  noinfbnd2lem1  33933  noinfbnd2  33934  noetasuplem4  33939  noetainflem4  33943  sltirr  33949  slttr  33950  sltasym  33951  sltlin  33952  slttrieq2  33953  slttrine  33954  sleloe  33957  sltletr  33959  slelttr  33960
  Copyright terms: Public domain W3C validator