Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version |
Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
Ref | Expression |
---|---|
sltso | ⊢ <s Or No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsolem1 26903 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
2 | df-no 26871 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
3 | df-slt 26872 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
4 | nosgnn0 26886 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
5 | 1, 2, 3, 4 | soseq 8024 | 1 ⊢ <s Or No |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4266 {cpr 4572 {ctp 4574 〈cop 4576 Or wor 5519 1oc1o 8338 2oc2o 8339 No csur 26868 <s cslt 26869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ord 6291 df-on 6292 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-fv 6473 df-1o 8345 df-2o 8346 df-no 26871 df-slt 26872 |
This theorem is referenced by: nosepne 26908 nosepdm 26912 nodenselem4 26915 nodenselem5 26916 nodenselem7 26918 nolt02o 33968 nogt01o 33969 noresle 33970 nomaxmo 33971 nominmo 33972 nosupprefixmo 33973 noinfprefixmo 33974 nosupbnd1lem1 33981 nosupbnd1lem2 33982 nosupbnd1lem4 33984 nosupbnd1lem6 33986 nosupbnd1 33987 nosupbnd2lem1 33988 nosupbnd2 33989 noinfbnd1lem1 33996 noinfbnd1lem2 33997 noinfbnd1lem4 33999 noinfbnd1lem6 34001 noinfbnd1 34002 noinfbnd2lem1 34003 noinfbnd2 34004 noetasuplem4 34009 noetainflem4 34013 sltirr 34019 slttr 34020 sltasym 34021 sltlin 34022 slttrieq2 34023 slttrine 34024 sleloe 34027 sltletr 34029 slelttr 34030 |
Copyright terms: Public domain | W3C validator |