|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version | ||
| Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| sltso | ⊢ <s Or No | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sltsolem1 27720 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
| 2 | df-no 27687 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
| 3 | df-slt 27688 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
| 4 | nosgnn0 27703 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
| 5 | 1, 2, 3, 4 | soseq 8184 | 1 ⊢ <s Or No | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∅c0 4333 {cpr 4628 {ctp 4630 〈cop 4632 Or wor 5591 1oc1o 8499 2oc2o 8500 No csur 27684 <s cslt 27685 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-1o 8506 df-2o 8507 df-no 27687 df-slt 27688 | 
| This theorem is referenced by: nosepne 27725 nosepdm 27729 nodenselem4 27732 nodenselem5 27733 nodenselem7 27735 nolt02o 27740 nogt01o 27741 noresle 27742 nomaxmo 27743 nominmo 27744 nosupprefixmo 27745 noinfprefixmo 27746 nosupbnd1lem1 27753 nosupbnd1lem2 27754 nosupbnd1lem4 27756 nosupbnd1lem6 27758 nosupbnd1 27759 nosupbnd2lem1 27760 nosupbnd2 27761 noinfbnd1lem1 27768 noinfbnd1lem2 27769 noinfbnd1lem4 27771 noinfbnd1lem6 27773 noinfbnd1 27774 noinfbnd2lem1 27775 noinfbnd2 27776 noetasuplem4 27781 noetainflem4 27785 sltirr 27791 slttr 27792 sltasym 27793 sltlin 27794 slttrieq2 27795 slttrine 27796 sleloe 27799 sltletr 27801 slelttr 27802 | 
| Copyright terms: Public domain | W3C validator |