| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version | ||
| Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
| Ref | Expression |
|---|---|
| sltso | ⊢ <s Or No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsolem1 27587 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
| 2 | df-no 27554 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
| 3 | df-slt 27555 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
| 4 | nosgnn0 27570 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
| 5 | 1, 2, 3, 4 | soseq 8138 | 1 ⊢ <s Or No |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4296 {cpr 4591 {ctp 4593 〈cop 4595 Or wor 5545 1oc1o 8427 2oc2o 8428 No csur 27551 <s cslt 27552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 |
| This theorem is referenced by: nosepne 27592 nosepdm 27596 nodenselem4 27599 nodenselem5 27600 nodenselem7 27602 nolt02o 27607 nogt01o 27608 noresle 27609 nomaxmo 27610 nominmo 27611 nosupprefixmo 27612 noinfprefixmo 27613 nosupbnd1lem1 27620 nosupbnd1lem2 27621 nosupbnd1lem4 27623 nosupbnd1lem6 27625 nosupbnd1 27626 nosupbnd2lem1 27627 nosupbnd2 27628 noinfbnd1lem1 27635 noinfbnd1lem2 27636 noinfbnd1lem4 27638 noinfbnd1lem6 27640 noinfbnd1 27641 noinfbnd2lem1 27642 noinfbnd2 27643 noetasuplem4 27648 noetainflem4 27652 sltirr 27658 slttr 27659 sltasym 27660 sltlin 27661 slttrieq2 27662 slttrine 27663 sleloe 27666 sltletr 27668 slelttr 27669 n0sfincut 28246 |
| Copyright terms: Public domain | W3C validator |