![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version |
Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
Ref | Expression |
---|---|
sltso | ⊢ <s Or No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsolem1 27178 | . 2 ⊢ {⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} Or ({1o, 2o} ∪ {∅}) | |
2 | df-no 27146 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
3 | df-slt 27147 | . 2 ⊢ <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔‘𝑥)))} | |
4 | nosgnn0 27161 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
5 | 1, 2, 3, 4 | soseq 8145 | 1 ⊢ <s Or No |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4323 {cpr 4631 {ctp 4633 ⟨cop 4635 Or wor 5588 1oc1o 8459 2oc2o 8460 No csur 27143 <s cslt 27144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-1o 8466 df-2o 8467 df-no 27146 df-slt 27147 |
This theorem is referenced by: nosepne 27183 nosepdm 27187 nodenselem4 27190 nodenselem5 27191 nodenselem7 27193 nolt02o 27198 nogt01o 27199 noresle 27200 nomaxmo 27201 nominmo 27202 nosupprefixmo 27203 noinfprefixmo 27204 nosupbnd1lem1 27211 nosupbnd1lem2 27212 nosupbnd1lem4 27214 nosupbnd1lem6 27216 nosupbnd1 27217 nosupbnd2lem1 27218 nosupbnd2 27219 noinfbnd1lem1 27226 noinfbnd1lem2 27227 noinfbnd1lem4 27229 noinfbnd1lem6 27231 noinfbnd1 27232 noinfbnd2lem1 27233 noinfbnd2 27234 noetasuplem4 27239 noetainflem4 27243 sltirr 27249 slttr 27250 sltasym 27251 sltlin 27252 slttrieq2 27253 slttrine 27254 sleloe 27257 sltletr 27259 slelttr 27260 |
Copyright terms: Public domain | W3C validator |