![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version |
Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
Ref | Expression |
---|---|
sltso | ⊢ <s Or No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsolem1 27654 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
2 | df-no 27621 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
3 | df-slt 27622 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
4 | nosgnn0 27637 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
5 | 1, 2, 3, 4 | soseq 8164 | 1 ⊢ <s Or No |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4322 {cpr 4632 {ctp 4634 〈cop 4636 Or wor 5589 1oc1o 8480 2oc2o 8481 No csur 27618 <s cslt 27619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-1o 8487 df-2o 8488 df-no 27621 df-slt 27622 |
This theorem is referenced by: nosepne 27659 nosepdm 27663 nodenselem4 27666 nodenselem5 27667 nodenselem7 27669 nolt02o 27674 nogt01o 27675 noresle 27676 nomaxmo 27677 nominmo 27678 nosupprefixmo 27679 noinfprefixmo 27680 nosupbnd1lem1 27687 nosupbnd1lem2 27688 nosupbnd1lem4 27690 nosupbnd1lem6 27692 nosupbnd1 27693 nosupbnd2lem1 27694 nosupbnd2 27695 noinfbnd1lem1 27702 noinfbnd1lem2 27703 noinfbnd1lem4 27705 noinfbnd1lem6 27707 noinfbnd1 27708 noinfbnd2lem1 27709 noinfbnd2 27710 noetasuplem4 27715 noetainflem4 27719 sltirr 27725 slttr 27726 sltasym 27727 sltlin 27728 slttrieq2 27729 slttrine 27730 sleloe 27733 sltletr 27735 slelttr 27736 |
Copyright terms: Public domain | W3C validator |