![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version |
Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
Ref | Expression |
---|---|
sltso | ⊢ <s Or No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsolem1 27758 | . 2 ⊢ {⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} Or ({1o, 2o} ∪ {∅}) | |
2 | df-no 27725 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
3 | df-slt 27726 | . 2 ⊢ <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔‘𝑥)))} | |
4 | nosgnn0 27741 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
5 | 1, 2, 3, 4 | soseq 8203 | 1 ⊢ <s Or No |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4352 {cpr 4650 {ctp 4652 ⟨cop 4654 Or wor 5607 1oc1o 8518 2oc2o 8519 No csur 27722 <s cslt 27723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5318 ax-nul 5325 ax-pr 5448 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4933 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-ord 6401 df-on 6402 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-fv 6584 df-1o 8525 df-2o 8526 df-no 27725 df-slt 27726 |
This theorem is referenced by: nosepne 27763 nosepdm 27767 nodenselem4 27770 nodenselem5 27771 nodenselem7 27773 nolt02o 27778 nogt01o 27779 noresle 27780 nomaxmo 27781 nominmo 27782 nosupprefixmo 27783 noinfprefixmo 27784 nosupbnd1lem1 27791 nosupbnd1lem2 27792 nosupbnd1lem4 27794 nosupbnd1lem6 27796 nosupbnd1 27797 nosupbnd2lem1 27798 nosupbnd2 27799 noinfbnd1lem1 27806 noinfbnd1lem2 27807 noinfbnd1lem4 27809 noinfbnd1lem6 27811 noinfbnd1 27812 noinfbnd2lem1 27813 noinfbnd2 27814 noetasuplem4 27819 noetainflem4 27823 sltirr 27829 slttr 27830 sltasym 27831 sltlin 27832 slttrieq2 27833 slttrine 27834 sleloe 27837 sltletr 27839 slelttr 27840 |
Copyright terms: Public domain | W3C validator |