MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltso Structured version   Visualization version   GIF version

Theorem sltso 27588
Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.)
Assertion
Ref Expression
sltso <s Or No

Proof of Theorem sltso
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltsolem1 27587 . 2 {⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} Or ({1o, 2o} ∪ {∅})
2 df-no 27554 . 2 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
3 df-slt 27555 . 2 <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))}
4 nosgnn0 27570 . 2 ¬ ∅ ∈ {1o, 2o}
51, 2, 3, 4soseq 8138 1 <s Or No
Colors of variables: wff setvar class
Syntax hints:  c0 4296  {cpr 4591  {ctp 4593  cop 4595   Or wor 5545  1oc1o 8427  2oc2o 8428   No csur 27551   <s cslt 27552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555
This theorem is referenced by:  nosepne  27592  nosepdm  27596  nodenselem4  27599  nodenselem5  27600  nodenselem7  27602  nolt02o  27607  nogt01o  27608  noresle  27609  nomaxmo  27610  nominmo  27611  nosupprefixmo  27612  noinfprefixmo  27613  nosupbnd1lem1  27620  nosupbnd1lem2  27621  nosupbnd1lem4  27623  nosupbnd1lem6  27625  nosupbnd1  27626  nosupbnd2lem1  27627  nosupbnd2  27628  noinfbnd1lem1  27635  noinfbnd1lem2  27636  noinfbnd1lem4  27638  noinfbnd1lem6  27640  noinfbnd1  27641  noinfbnd2lem1  27642  noinfbnd2  27643  noetasuplem4  27648  noetainflem4  27652  sltirr  27658  slttr  27659  sltasym  27660  sltlin  27661  slttrieq2  27662  slttrine  27663  sleloe  27666  sltletr  27668  slelttr  27669  n0sfincut  28246
  Copyright terms: Public domain W3C validator