Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sltso | Structured version Visualization version GIF version |
Description: Surreal less than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
Ref | Expression |
---|---|
sltso | ⊢ <s Or No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsolem1 33878 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
2 | df-no 33846 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
3 | df-slt 33847 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
4 | nosgnn0 33861 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
5 | 1, 2, 3, 4 | soseq 33803 | 1 ⊢ <s Or No |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4256 {cpr 4563 {ctp 4565 〈cop 4567 Or wor 5502 1oc1o 8290 2oc2o 8291 No csur 33843 <s cslt 33844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 |
This theorem is referenced by: nosepne 33883 nosepdm 33887 nodenselem4 33890 nodenselem5 33891 nodenselem7 33893 nolt02o 33898 nogt01o 33899 noresle 33900 nomaxmo 33901 nominmo 33902 nosupprefixmo 33903 noinfprefixmo 33904 nosupbnd1lem1 33911 nosupbnd1lem2 33912 nosupbnd1lem4 33914 nosupbnd1lem6 33916 nosupbnd1 33917 nosupbnd2lem1 33918 nosupbnd2 33919 noinfbnd1lem1 33926 noinfbnd1lem2 33927 noinfbnd1lem4 33929 noinfbnd1lem6 33931 noinfbnd1 33932 noinfbnd2lem1 33933 noinfbnd2 33934 noetasuplem4 33939 noetainflem4 33943 sltirr 33949 slttr 33950 sltasym 33951 sltlin 33952 slttrieq2 33953 slttrine 33954 sleloe 33957 sltletr 33959 slelttr 33960 |
Copyright terms: Public domain | W3C validator |