| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version | ||
| Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
| Ref | Expression |
|---|---|
| sltso | ⊢ <s Or No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsolem1 27614 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
| 2 | df-no 27581 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
| 3 | df-slt 27582 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
| 4 | nosgnn0 27597 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
| 5 | 1, 2, 3, 4 | soseq 8089 | 1 ⊢ <s Or No |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4280 {cpr 4575 {ctp 4577 〈cop 4579 Or wor 5521 1oc1o 8378 2oc2o 8379 No csur 27578 <s cslt 27579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 |
| This theorem is referenced by: nosepne 27619 nosepdm 27623 nodenselem4 27626 nodenselem5 27627 nodenselem7 27629 nolt02o 27634 nogt01o 27635 noresle 27636 nomaxmo 27637 nominmo 27638 nosupprefixmo 27639 noinfprefixmo 27640 nosupbnd1lem1 27647 nosupbnd1lem2 27648 nosupbnd1lem4 27650 nosupbnd1lem6 27652 nosupbnd1 27653 nosupbnd2lem1 27654 nosupbnd2 27655 noinfbnd1lem1 27662 noinfbnd1lem2 27663 noinfbnd1lem4 27665 noinfbnd1lem6 27667 noinfbnd1 27668 noinfbnd2lem1 27669 noinfbnd2 27670 noetasuplem4 27675 noetainflem4 27679 sltirr 27685 slttr 27686 sltasym 27687 sltlin 27688 slttrieq2 27689 slttrine 27690 sleloe 27693 sltletr 27695 slelttr 27696 n0sfincut 28282 |
| Copyright terms: Public domain | W3C validator |