MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltso Structured version   Visualization version   GIF version

Theorem sltso 27595
Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.)
Assertion
Ref Expression
sltso <s Or No

Proof of Theorem sltso
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltsolem1 27594 . 2 {⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} Or ({1o, 2o} ∪ {∅})
2 df-no 27561 . 2 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
3 df-slt 27562 . 2 <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))}
4 nosgnn0 27577 . 2 ¬ ∅ ∈ {1o, 2o}
51, 2, 3, 4soseq 8141 1 <s Or No
Colors of variables: wff setvar class
Syntax hints:  c0 4299  {cpr 4594  {ctp 4596  cop 4598   Or wor 5548  1oc1o 8430  2oc2o 8431   No csur 27558   <s cslt 27559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562
This theorem is referenced by:  nosepne  27599  nosepdm  27603  nodenselem4  27606  nodenselem5  27607  nodenselem7  27609  nolt02o  27614  nogt01o  27615  noresle  27616  nomaxmo  27617  nominmo  27618  nosupprefixmo  27619  noinfprefixmo  27620  nosupbnd1lem1  27627  nosupbnd1lem2  27628  nosupbnd1lem4  27630  nosupbnd1lem6  27632  nosupbnd1  27633  nosupbnd2lem1  27634  nosupbnd2  27635  noinfbnd1lem1  27642  noinfbnd1lem2  27643  noinfbnd1lem4  27645  noinfbnd1lem6  27647  noinfbnd1  27648  noinfbnd2lem1  27649  noinfbnd2  27650  noetasuplem4  27655  noetainflem4  27659  sltirr  27665  slttr  27666  sltasym  27667  sltlin  27668  slttrieq2  27669  slttrine  27670  sleloe  27673  sltletr  27675  slelttr  27676  n0sfincut  28253
  Copyright terms: Public domain W3C validator