MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltso Structured version   Visualization version   GIF version

Theorem sltso 27640
Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.)
Assertion
Ref Expression
sltso <s Or No

Proof of Theorem sltso
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sltsolem1 27639 . 2 {⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} Or ({1o, 2o} ∪ {∅})
2 df-no 27606 . 2 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
3 df-slt 27607 . 2 <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))}
4 nosgnn0 27622 . 2 ¬ ∅ ∈ {1o, 2o}
51, 2, 3, 4soseq 8158 1 <s Or No
Colors of variables: wff setvar class
Syntax hints:  c0 4308  {cpr 4603  {ctp 4605  cop 4607   Or wor 5560  1oc1o 8473  2oc2o 8474   No csur 27603   <s cslt 27604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607
This theorem is referenced by:  nosepne  27644  nosepdm  27648  nodenselem4  27651  nodenselem5  27652  nodenselem7  27654  nolt02o  27659  nogt01o  27660  noresle  27661  nomaxmo  27662  nominmo  27663  nosupprefixmo  27664  noinfprefixmo  27665  nosupbnd1lem1  27672  nosupbnd1lem2  27673  nosupbnd1lem4  27675  nosupbnd1lem6  27677  nosupbnd1  27678  nosupbnd2lem1  27679  nosupbnd2  27680  noinfbnd1lem1  27687  noinfbnd1lem2  27688  noinfbnd1lem4  27690  noinfbnd1lem6  27692  noinfbnd1  27693  noinfbnd2lem1  27694  noinfbnd2  27695  noetasuplem4  27700  noetainflem4  27704  sltirr  27710  slttr  27711  sltasym  27712  sltlin  27713  slttrieq2  27714  slttrine  27715  sleloe  27718  sltletr  27720  slelttr  27721  n0sfincut  28298
  Copyright terms: Public domain W3C validator