Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sltso | Structured version Visualization version GIF version |
Description: Surreal less than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
Ref | Expression |
---|---|
sltso | ⊢ <s Or No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltsolem1 33805 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
2 | df-no 33773 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
3 | df-slt 33774 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
4 | nosgnn0 33788 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
5 | 1, 2, 3, 4 | soseq 33730 | 1 ⊢ <s Or No |
Colors of variables: wff setvar class |
Syntax hints: ∅c0 4253 {cpr 4560 {ctp 4562 〈cop 4564 Or wor 5493 1oc1o 8260 2oc2o 8261 No csur 33770 <s cslt 33771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 |
This theorem is referenced by: nosepne 33810 nosepdm 33814 nodenselem4 33817 nodenselem5 33818 nodenselem7 33820 nolt02o 33825 nogt01o 33826 noresle 33827 nomaxmo 33828 nominmo 33829 nosupprefixmo 33830 noinfprefixmo 33831 nosupbnd1lem1 33838 nosupbnd1lem2 33839 nosupbnd1lem4 33841 nosupbnd1lem6 33843 nosupbnd1 33844 nosupbnd2lem1 33845 nosupbnd2 33846 noinfbnd1lem1 33853 noinfbnd1lem2 33854 noinfbnd1lem4 33856 noinfbnd1lem6 33858 noinfbnd1 33859 noinfbnd2lem1 33860 noinfbnd2 33861 noetasuplem4 33866 noetainflem4 33870 sltirr 33876 slttr 33877 sltasym 33878 sltlin 33879 slttrieq2 33880 slttrine 33881 sleloe 33884 sltletr 33886 slelttr 33887 |
Copyright terms: Public domain | W3C validator |