| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version | ||
| Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
| Ref | Expression |
|---|---|
| sltso | ⊢ <s Or No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsolem1 27563 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
| 2 | df-no 27530 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
| 3 | df-slt 27531 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
| 4 | nosgnn0 27546 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
| 5 | 1, 2, 3, 4 | soseq 8115 | 1 ⊢ <s Or No |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4292 {cpr 4587 {ctp 4589 〈cop 4591 Or wor 5538 1oc1o 8404 2oc2o 8405 No csur 27527 <s cslt 27528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-1o 8411 df-2o 8412 df-no 27530 df-slt 27531 |
| This theorem is referenced by: nosepne 27568 nosepdm 27572 nodenselem4 27575 nodenselem5 27576 nodenselem7 27578 nolt02o 27583 nogt01o 27584 noresle 27585 nomaxmo 27586 nominmo 27587 nosupprefixmo 27588 noinfprefixmo 27589 nosupbnd1lem1 27596 nosupbnd1lem2 27597 nosupbnd1lem4 27599 nosupbnd1lem6 27601 nosupbnd1 27602 nosupbnd2lem1 27603 nosupbnd2 27604 noinfbnd1lem1 27611 noinfbnd1lem2 27612 noinfbnd1lem4 27614 noinfbnd1lem6 27616 noinfbnd1 27617 noinfbnd2lem1 27618 noinfbnd2 27619 noetasuplem4 27624 noetainflem4 27628 sltirr 27634 slttr 27635 sltasym 27636 sltlin 27637 slttrieq2 27638 slttrine 27639 sleloe 27642 sltletr 27644 slelttr 27645 n0sfincut 28222 |
| Copyright terms: Public domain | W3C validator |