| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version | ||
| Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
| Ref | Expression |
|---|---|
| sltso | ⊢ <s Or No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsolem1 27585 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
| 2 | df-no 27552 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
| 3 | df-slt 27553 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
| 4 | nosgnn0 27568 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
| 5 | 1, 2, 3, 4 | soseq 8092 | 1 ⊢ <s Or No |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4284 {cpr 4579 {ctp 4581 〈cop 4583 Or wor 5526 1oc1o 8381 2oc2o 8382 No csur 27549 <s cslt 27550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 |
| This theorem is referenced by: nosepne 27590 nosepdm 27594 nodenselem4 27597 nodenselem5 27598 nodenselem7 27600 nolt02o 27605 nogt01o 27606 noresle 27607 nomaxmo 27608 nominmo 27609 nosupprefixmo 27610 noinfprefixmo 27611 nosupbnd1lem1 27618 nosupbnd1lem2 27619 nosupbnd1lem4 27621 nosupbnd1lem6 27623 nosupbnd1 27624 nosupbnd2lem1 27625 nosupbnd2 27626 noinfbnd1lem1 27633 noinfbnd1lem2 27634 noinfbnd1lem4 27636 noinfbnd1lem6 27638 noinfbnd1 27639 noinfbnd2lem1 27640 noinfbnd2 27641 noetasuplem4 27646 noetainflem4 27650 sltirr 27656 slttr 27657 sltasym 27658 sltlin 27659 slttrieq2 27660 slttrine 27661 sleloe 27664 sltletr 27666 slelttr 27667 n0sfincut 28251 |
| Copyright terms: Public domain | W3C validator |