| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltso | Structured version Visualization version GIF version | ||
| Description: Less-than totally orders the surreals. Axiom O of [Alling] p. 184. (Contributed by Scott Fenton, 9-Jun-2011.) |
| Ref | Expression |
|---|---|
| sltso | ⊢ <s Or No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltsolem1 27594 | . 2 ⊢ {〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} Or ({1o, 2o} ∪ {∅}) | |
| 2 | df-no 27561 | . 2 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
| 3 | df-slt 27562 | . 2 ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No ∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉, 〈1o, 2o〉, 〈∅, 2o〉} (𝑔‘𝑥)))} | |
| 4 | nosgnn0 27577 | . 2 ⊢ ¬ ∅ ∈ {1o, 2o} | |
| 5 | 1, 2, 3, 4 | soseq 8141 | 1 ⊢ <s Or No |
| Colors of variables: wff setvar class |
| Syntax hints: ∅c0 4299 {cpr 4594 {ctp 4596 〈cop 4598 Or wor 5548 1oc1o 8430 2oc2o 8431 No csur 27558 <s cslt 27559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 |
| This theorem is referenced by: nosepne 27599 nosepdm 27603 nodenselem4 27606 nodenselem5 27607 nodenselem7 27609 nolt02o 27614 nogt01o 27615 noresle 27616 nomaxmo 27617 nominmo 27618 nosupprefixmo 27619 noinfprefixmo 27620 nosupbnd1lem1 27627 nosupbnd1lem2 27628 nosupbnd1lem4 27630 nosupbnd1lem6 27632 nosupbnd1 27633 nosupbnd2lem1 27634 nosupbnd2 27635 noinfbnd1lem1 27642 noinfbnd1lem2 27643 noinfbnd1lem4 27645 noinfbnd1lem6 27647 noinfbnd1 27648 noinfbnd2lem1 27649 noinfbnd2 27650 noetasuplem4 27655 noetainflem4 27659 sltirr 27665 slttr 27666 sltasym 27667 sltlin 27668 slttrieq2 27669 slttrine 27670 sleloe 27673 sltletr 27675 slelttr 27676 n0sfincut 28253 |
| Copyright terms: Public domain | W3C validator |