MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elno Structured version   Visualization version   GIF version

Theorem elno 27708
Description: Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) Avoid ax-rep 5303. (Revised by SN, 5-Jun-2025.)
Assertion
Ref Expression
elno (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Distinct variable group:   𝑥,𝐴

Proof of Theorem elno
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐴 No 𝐴 ∈ V)
2 vex 3492 . . . 4 𝑥 ∈ V
3 prex 5452 . . . 4 {1o, 2o} ∈ V
4 fex2 7974 . . . 4 ((𝐴:𝑥⟶{1o, 2o} ∧ 𝑥 ∈ V ∧ {1o, 2o} ∈ V) → 𝐴 ∈ V)
52, 3, 4mp3an23 1453 . . 3 (𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V)
65rexlimivw 3157 . 2 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V)
7 feq1 6728 . . . 4 (𝑓 = 𝐴 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝐴:𝑥⟶{1o, 2o}))
87rexbidv 3185 . . 3 (𝑓 = 𝐴 → (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
9 df-no 27705 . . 3 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
108, 9elab2g 3696 . 2 (𝐴 ∈ V → (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
111, 6, 10pm5.21nii 378 1 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  {cpr 4650  Oncon0 6395  wf 6569  1oc1o 8515  2oc2o 8516   No csur 27702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-no 27705
This theorem is referenced by:  nofun  27712  nodmon  27713  norn  27714  elno2  27717  noreson  27723
  Copyright terms: Public domain W3C validator