MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elno Structured version   Visualization version   GIF version

Theorem elno 27614
Description: Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) Avoid ax-rep 5254. (Revised by SN, 5-Jun-2025.)
Assertion
Ref Expression
elno (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Distinct variable group:   𝑥,𝐴

Proof of Theorem elno
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝐴 No 𝐴 ∈ V)
2 vex 3468 . . . 4 𝑥 ∈ V
3 prex 5412 . . . 4 {1o, 2o} ∈ V
4 fex2 7937 . . . 4 ((𝐴:𝑥⟶{1o, 2o} ∧ 𝑥 ∈ V ∧ {1o, 2o} ∈ V) → 𝐴 ∈ V)
52, 3, 4mp3an23 1455 . . 3 (𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V)
65rexlimivw 3138 . 2 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V)
7 feq1 6691 . . . 4 (𝑓 = 𝐴 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝐴:𝑥⟶{1o, 2o}))
87rexbidv 3165 . . 3 (𝑓 = 𝐴 → (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
9 df-no 27611 . . 3 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
108, 9elab2g 3664 . 2 (𝐴 ∈ V → (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
111, 6, 10pm5.21nii 378 1 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  {cpr 4608  Oncon0 6357  wf 6532  1oc1o 8478  2oc2o 8479   No csur 27608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-fun 6538  df-fn 6539  df-f 6540  df-no 27611
This theorem is referenced by:  nofun  27618  nodmon  27619  norn  27620  elno2  27623  noreson  27629
  Copyright terms: Public domain W3C validator