![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elno | Structured version Visualization version GIF version |
Description: Membership in the surreals. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.) |
Ref | Expression |
---|---|
elno | ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3488 | . 2 ⊢ (𝐴 ∈ No → 𝐴 ∈ V) | |
2 | fex 7232 | . . . 4 ⊢ ((𝐴:𝑥⟶{1o, 2o} ∧ 𝑥 ∈ On) → 𝐴 ∈ V) | |
3 | 2 | ancoms 458 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → 𝐴 ∈ V) |
4 | 3 | rexlimiva 3142 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V) |
5 | feq1 6697 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝐴:𝑥⟶{1o, 2o})) | |
6 | 5 | rexbidv 3173 | . . 3 ⊢ (𝑓 = 𝐴 → (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})) |
7 | df-no 27563 | . . 3 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
8 | 6, 7 | elab2g 3667 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})) |
9 | 1, 4, 8 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3065 Vcvv 3469 {cpr 4626 Oncon0 6363 ⟶wf 6538 1oc1o 8473 2oc2o 8474 No csur 27560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-no 27563 |
This theorem is referenced by: nofun 27569 nodmon 27570 norn 27571 elno2 27574 noreson 27580 |
Copyright terms: Public domain | W3C validator |