| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elno | Structured version Visualization version GIF version | ||
| Description: Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) Avoid ax-rep 5229. (Revised by SN, 5-Jun-2025.) |
| Ref | Expression |
|---|---|
| elno | ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3465 | . 2 ⊢ (𝐴 ∈ No → 𝐴 ∈ V) | |
| 2 | vex 3448 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | prex 5387 | . . . 4 ⊢ {1o, 2o} ∈ V | |
| 4 | fex2 7892 | . . . 4 ⊢ ((𝐴:𝑥⟶{1o, 2o} ∧ 𝑥 ∈ V ∧ {1o, 2o} ∈ V) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | mp3an23 1455 | . . 3 ⊢ (𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V) |
| 6 | 5 | rexlimivw 3130 | . 2 ⊢ (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V) |
| 7 | feq1 6648 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝐴:𝑥⟶{1o, 2o})) | |
| 8 | 7 | rexbidv 3157 | . . 3 ⊢ (𝑓 = 𝐴 → (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})) |
| 9 | df-no 27587 | . . 3 ⊢ No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}} | |
| 10 | 8, 9 | elab2g 3644 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})) |
| 11 | 1, 6, 10 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 {cpr 4587 Oncon0 6320 ⟶wf 6495 1oc1o 8404 2oc2o 8405 No csur 27584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 df-no 27587 |
| This theorem is referenced by: nofun 27594 nodmon 27595 norn 27596 elno2 27599 noreson 27605 |
| Copyright terms: Public domain | W3C validator |