MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elno Structured version   Visualization version   GIF version

Theorem elno 27156
Description: Membership in the surreals. (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.)
Assertion
Ref Expression
elno (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Distinct variable group:   𝑥,𝐴

Proof of Theorem elno
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐴 No 𝐴 ∈ V)
2 fex 7230 . . . 4 ((𝐴:𝑥⟶{1o, 2o} ∧ 𝑥 ∈ On) → 𝐴 ∈ V)
32ancoms 459 . . 3 ((𝑥 ∈ On ∧ 𝐴:𝑥⟶{1o, 2o}) → 𝐴 ∈ V)
43rexlimiva 3147 . 2 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V)
5 feq1 6698 . . . 4 (𝑓 = 𝐴 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝐴:𝑥⟶{1o, 2o}))
65rexbidv 3178 . . 3 (𝑓 = 𝐴 → (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
7 df-no 27153 . . 3 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
86, 7elab2g 3670 . 2 (𝐴 ∈ V → (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
91, 4, 8pm5.21nii 379 1 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  {cpr 4630  Oncon0 6364  wf 6539  1oc1o 8461  2oc2o 8462   No csur 27150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-no 27153
This theorem is referenced by:  nofun  27159  nodmon  27160  norn  27161  elno2  27164  noreson  27170
  Copyright terms: Public domain W3C validator