MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elno Structured version   Visualization version   GIF version

Theorem elno 27590
Description: Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011.) (Proof shortened by SF, 14-Apr-2012.) Avoid ax-rep 5229. (Revised by SN, 5-Jun-2025.)
Assertion
Ref Expression
elno (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Distinct variable group:   𝑥,𝐴

Proof of Theorem elno
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elex 3465 . 2 (𝐴 No 𝐴 ∈ V)
2 vex 3448 . . . 4 𝑥 ∈ V
3 prex 5387 . . . 4 {1o, 2o} ∈ V
4 fex2 7892 . . . 4 ((𝐴:𝑥⟶{1o, 2o} ∧ 𝑥 ∈ V ∧ {1o, 2o} ∈ V) → 𝐴 ∈ V)
52, 3, 4mp3an23 1455 . . 3 (𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V)
65rexlimivw 3130 . 2 (∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o} → 𝐴 ∈ V)
7 feq1 6648 . . . 4 (𝑓 = 𝐴 → (𝑓:𝑥⟶{1o, 2o} ↔ 𝐴:𝑥⟶{1o, 2o}))
87rexbidv 3157 . . 3 (𝑓 = 𝐴 → (∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o} ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
9 df-no 27587 . . 3 No = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶{1o, 2o}}
108, 9elab2g 3644 . 2 (𝐴 ∈ V → (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o}))
111, 6, 10pm5.21nii 378 1 (𝐴 No ↔ ∃𝑥 ∈ On 𝐴:𝑥⟶{1o, 2o})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  {cpr 4587  Oncon0 6320  wf 6495  1oc1o 8404  2oc2o 8405   No csur 27584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-no 27587
This theorem is referenced by:  nofun  27594  nodmon  27595  norn  27596  elno2  27599  noreson  27605
  Copyright terms: Public domain W3C validator