Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-norec2 Structured version   Visualization version   GIF version

Definition df-norec2 34106
Description: Define surreal recursion on two variables. This function is key to the development of most of surreal numbers. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
df-norec2 norec2 (𝐹) = frecs({⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}, ( No × No ), 𝐹)
Distinct variable group:   𝐹,𝑎,𝑏,𝑐,𝑑

Detailed syntax breakdown of Definition df-norec2
StepHypRef Expression
1 cF . . 3 class 𝐹
21cnorec2 34105 . 2 class norec2 (𝐹)
3 csur 33843 . . . 4 class No
43, 3cxp 5587 . . 3 class ( No × No )
5 va . . . . . . 7 setvar 𝑎
65cv 1538 . . . . . 6 class 𝑎
76, 4wcel 2106 . . . . 5 wff 𝑎 ∈ ( No × No )
8 vb . . . . . . 7 setvar 𝑏
98cv 1538 . . . . . 6 class 𝑏
109, 4wcel 2106 . . . . 5 wff 𝑏 ∈ ( No × No )
11 c1st 7829 . . . . . . . . 9 class 1st
126, 11cfv 6433 . . . . . . . 8 class (1st𝑎)
139, 11cfv 6433 . . . . . . . 8 class (1st𝑏)
14 vc . . . . . . . . . . 11 setvar 𝑐
1514cv 1538 . . . . . . . . . 10 class 𝑐
16 vd . . . . . . . . . . . . 13 setvar 𝑑
1716cv 1538 . . . . . . . . . . . 12 class 𝑑
18 cleft 34029 . . . . . . . . . . . 12 class L
1917, 18cfv 6433 . . . . . . . . . . 11 class ( L ‘𝑑)
20 cright 34030 . . . . . . . . . . . 12 class R
2117, 20cfv 6433 . . . . . . . . . . 11 class ( R ‘𝑑)
2219, 21cun 3885 . . . . . . . . . 10 class (( L ‘𝑑) ∪ ( R ‘𝑑))
2315, 22wcel 2106 . . . . . . . . 9 wff 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))
2423, 14, 16copab 5136 . . . . . . . 8 class {⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))}
2512, 13, 24wbr 5074 . . . . . . 7 wff (1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏)
2612, 13wceq 1539 . . . . . . 7 wff (1st𝑎) = (1st𝑏)
2725, 26wo 844 . . . . . 6 wff ((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏))
28 c2nd 7830 . . . . . . . . 9 class 2nd
296, 28cfv 6433 . . . . . . . 8 class (2nd𝑎)
309, 28cfv 6433 . . . . . . . 8 class (2nd𝑏)
3129, 30, 24wbr 5074 . . . . . . 7 wff (2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏)
3229, 30wceq 1539 . . . . . . 7 wff (2nd𝑎) = (2nd𝑏)
3331, 32wo 844 . . . . . 6 wff ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏))
346, 9wne 2943 . . . . . 6 wff 𝑎𝑏
3527, 33, 34w3a 1086 . . . . 5 wff (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏)
367, 10, 35w3a 1086 . . . 4 wff (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))
3736, 5, 8copab 5136 . . 3 class {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}
384, 37, 1cfrecs 8096 . 2 class frecs({⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}, ( No × No ), 𝐹)
392, 38wceq 1539 1 wff norec2 (𝐹) = frecs({⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}, ( No × No ), 𝐹)
Colors of variables: wff setvar class
This definition is referenced by:  norec2fn  34113  norec2ov  34114
  Copyright terms: Public domain W3C validator