MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  norec2fn Structured version   Visualization version   GIF version

Theorem norec2fn 27440
Description: The double-recursion operator on surreals yields a function on pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024.)
Hypothesis
Ref Expression
norec2.1 𝐹 = norec2 (𝐺)
Assertion
Ref Expression
norec2fn 𝐹 Fn ( No × No )

Proof of Theorem norec2fn
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 {⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} = {⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))}
2 eqid 2733 . . 3 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}
31, 2noxpordfr 27435 . 2 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))} Fr ( No × No )
41, 2noxpordpo 27434 . 2 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))} Po ( No × No )
51, 2noxpordse 27436 . 2 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))} Se ( No × No )
6 norec2.1 . . . 4 𝐹 = norec2 (𝐺)
7 df-norec2 27433 . . . 4 norec2 (𝐺) = frecs({⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}, ( No × No ), 𝐺)
86, 7eqtri 2761 . . 3 𝐹 = frecs({⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}, ( No × No ), 𝐺)
98fpr1 8288 . 2 (({⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))} Fr ( No × No ) ∧ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))} Po ( No × No ) ∧ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))} Se ( No × No )) → 𝐹 Fn ( No × No ))
103, 4, 5, 9mp3an 1462 1 𝐹 Fn ( No × No )
Colors of variables: wff setvar class
Syntax hints:  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2941  cun 3947   class class class wbr 5149  {copab 5211   Po wpo 5587   Fr wfr 5629   Se wse 5630   × cxp 5675   Fn wfn 6539  cfv 6544  1st c1st 7973  2nd c2nd 7974  frecscfrecs 8265   No csur 27143   L cleft 27340   R cright 27341   norec2 cnorec2 27432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147  df-bday 27148  df-sslt 27283  df-scut 27285  df-made 27342  df-old 27343  df-left 27345  df-right 27346  df-norec2 27433
This theorem is referenced by:  addsfn  27445  mulsfn  27564
  Copyright terms: Public domain W3C validator