Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
{〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} = {〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} |
2 | | eqid 2738 |
. . 3
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ (
No × No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))} = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ( No
× No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))} |
3 | 1, 2 | noxpordfr 34108 |
. 2
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ (
No × No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))} Fr ( No
× No ) |
4 | 1, 2 | noxpordpo 34107 |
. 2
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ (
No × No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))} Po ( No
× No ) |
5 | 1, 2 | noxpordse 34109 |
. 2
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ (
No × No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))} Se ( No
× No ) |
6 | | norec2.1 |
. . . 4
⊢ 𝐹 = norec2 (𝐺) |
7 | | df-norec2 34106 |
. . . 4
⊢ norec2
(𝐺) = frecs({〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ( No
× No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))}, ( No
× No ), 𝐺) |
8 | 6, 7 | eqtri 2766 |
. . 3
⊢ 𝐹 = frecs({〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ( No
× No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))}, ( No
× No ), 𝐺) |
9 | 8 | fpr1 8119 |
. 2
⊢
(({〈𝑎, 𝑏〉 ∣ (𝑎 ∈ (
No × No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))} Fr ( No
× No ) ∧ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ( No
× No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))} Po ( No
× No ) ∧ {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ( No
× No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))} Se ( No
× No )) → 𝐹 Fn ( No
× No )) |
10 | 3, 4, 5, 9 | mp3an 1460 |
1
⊢ 𝐹 Fn ( No
× No ) |