| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noxpordpo | Structured version Visualization version GIF version | ||
| Description: To get through most of the textbook definitions in surreal numbers we will need recursion on two variables. This set of theorems sets up the preconditions for double recursion. This theorem establishes the partial ordering. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| noxpord.1 | ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
| noxpord.2 | ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
| Ref | Expression |
|---|---|
| noxpordpo | ⊢ 𝑆 Po ( No × No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noxpord.2 | . . 3 ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
| 2 | noxpord.1 | . . . . 5 ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
| 3 | 2 | lrrecpo 27884 | . . . 4 ⊢ 𝑅 Po No |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 Po No ) |
| 5 | 1, 4, 4 | poxp2 8073 | . 2 ⊢ (⊤ → 𝑆 Po ( No × No )) |
| 6 | 5 | mptru 1548 | 1 ⊢ 𝑆 Po ( No × No ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 ≠ wne 2928 ∪ cun 3895 class class class wbr 5089 {copab 5151 Po wpo 5520 × cxp 5612 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 No csur 27578 L cleft 27786 R cright 27787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sslt 27721 df-scut 27723 df-made 27788 df-old 27789 df-left 27791 df-right 27792 |
| This theorem is referenced by: norec2fn 27899 norec2ov 27900 |
| Copyright terms: Public domain | W3C validator |