MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ntr Structured version   Visualization version   GIF version

Definition df-ntr 21623
Description: Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval 21639. (Contributed by NM, 10-Sep-2006.)
Assertion
Ref Expression
df-ntr int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
Distinct variable group:   𝑥,𝑗

Detailed syntax breakdown of Definition df-ntr
StepHypRef Expression
1 cnt 21620 . 2 class int
2 vj . . 3 setvar 𝑗
3 ctop 21496 . . 3 class Top
4 vx . . . 4 setvar 𝑥
52cv 1537 . . . . . 6 class 𝑗
65cuni 4813 . . . . 5 class 𝑗
76cpw 4511 . . . 4 class 𝒫 𝑗
84cv 1537 . . . . . . 7 class 𝑥
98cpw 4511 . . . . . 6 class 𝒫 𝑥
105, 9cin 3907 . . . . 5 class (𝑗 ∩ 𝒫 𝑥)
1110cuni 4813 . . . 4 class (𝑗 ∩ 𝒫 𝑥)
124, 7, 11cmpt 5122 . . 3 class (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥))
132, 3, 12cmpt 5122 . 2 class (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
141, 13wceq 1538 1 wff int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  ntrfval  21627
  Copyright terms: Public domain W3C validator