MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrval Structured version   Visualization version   GIF version

Theorem ntrval 22891
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ntrval ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) = βˆͺ (𝐽 ∩ 𝒫 𝑆))

Proof of Theorem ntrval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = βˆͺ 𝐽
21ntrfval 22879 . . . 4 (𝐽 ∈ Top β†’ (intβ€˜π½) = (π‘₯ ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 π‘₯)))
32fveq1d 6886 . . 3 (𝐽 ∈ Top β†’ ((intβ€˜π½)β€˜π‘†) = ((π‘₯ ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 π‘₯))β€˜π‘†))
43adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) = ((π‘₯ ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 π‘₯))β€˜π‘†))
5 eqid 2726 . . 3 (π‘₯ ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 π‘₯)) = (π‘₯ ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 π‘₯))
6 pweq 4611 . . . . 5 (π‘₯ = 𝑆 β†’ 𝒫 π‘₯ = 𝒫 𝑆)
76ineq2d 4207 . . . 4 (π‘₯ = 𝑆 β†’ (𝐽 ∩ 𝒫 π‘₯) = (𝐽 ∩ 𝒫 𝑆))
87unieqd 4915 . . 3 (π‘₯ = 𝑆 β†’ βˆͺ (𝐽 ∩ 𝒫 π‘₯) = βˆͺ (𝐽 ∩ 𝒫 𝑆))
91topopn 22759 . . . . 5 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
10 elpw2g 5337 . . . . 5 (𝑋 ∈ 𝐽 β†’ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 βŠ† 𝑋))
119, 10syl 17 . . . 4 (𝐽 ∈ Top β†’ (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 βŠ† 𝑋))
1211biimpar 477 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ 𝑆 ∈ 𝒫 𝑋)
13 inex1g 5312 . . . . 5 (𝐽 ∈ Top β†’ (𝐽 ∩ 𝒫 𝑆) ∈ V)
1413adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝐽 ∩ 𝒫 𝑆) ∈ V)
1514uniexd 7728 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ βˆͺ (𝐽 ∩ 𝒫 𝑆) ∈ V)
165, 8, 12, 15fvmptd3 7014 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((π‘₯ ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 π‘₯))β€˜π‘†) = βˆͺ (𝐽 ∩ 𝒫 𝑆))
174, 16eqtrd 2766 1 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘†) = βˆͺ (𝐽 ∩ 𝒫 𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3468   ∩ cin 3942   βŠ† wss 3943  π’« cpw 4597  βˆͺ cuni 4902   ↦ cmpt 5224  β€˜cfv 6536  Topctop 22746  intcnt 22872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-top 22747  df-ntr 22875
This theorem is referenced by:  ntropn  22904  clsval2  22905  ntrss2  22912  ssntr  22913  isopn3  22921  ntreq0  22932  toplatglb  47881
  Copyright terms: Public domain W3C validator