MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrval Structured version   Visualization version   GIF version

Theorem ntrval 23009
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrval ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))

Proof of Theorem ntrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5 𝑋 = 𝐽
21ntrfval 22997 . . . 4 (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
32fveq1d 6889 . . 3 (𝐽 ∈ Top → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆))
43adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆))
5 eqid 2734 . . 3 (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))
6 pweq 4596 . . . . 5 (𝑥 = 𝑆 → 𝒫 𝑥 = 𝒫 𝑆)
76ineq2d 4202 . . . 4 (𝑥 = 𝑆 → (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆))
87unieqd 4902 . . 3 (𝑥 = 𝑆 (𝐽 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑆))
91topopn 22879 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
10 elpw2g 5315 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
119, 10syl 17 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1211biimpar 477 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
13 inex1g 5301 . . . . 5 (𝐽 ∈ Top → (𝐽 ∩ 𝒫 𝑆) ∈ V)
1413adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V)
1514uniexd 7745 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽 ∩ 𝒫 𝑆) ∈ V)
165, 8, 12, 15fvmptd3 7020 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥))‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
174, 16eqtrd 2769 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3464  cin 3932  wss 3933  𝒫 cpw 4582   cuni 4889  cmpt 5207  cfv 6542  Topctop 22866  intcnt 22990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22867  df-ntr 22993
This theorem is referenced by:  ntropn  23022  clsval2  23023  ntrss2  23030  ssntr  23031  isopn3  23039  ntreq0  23050  toplatglb  48846
  Copyright terms: Public domain W3C validator