MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrfval Structured version   Visualization version   GIF version

Theorem ntrfval 23019
Description: The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrfval (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem ntrfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 22899 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 5382 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 mptexg 7238 . . 3 (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) ∈ V)
6 unieq 4924 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1eqtr4di 2784 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4624 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
9 ineq1 4206 . . . . 5 (𝑗 = 𝐽 → (𝑗 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑥))
109unieqd 4926 . . . 4 (𝑗 = 𝐽 (𝑗 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑥))
118, 10mpteq12dv 5244 . . 3 (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
12 df-ntr 23015 . . 3 int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
1311, 12fvmptg 7007 . 2 ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)) ∈ V) → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
145, 13mpdan 685 1 (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3462  cin 3946  𝒫 cpw 4607   cuni 4913  cmpt 5236  cfv 6554  Topctop 22886  intcnt 23012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-top 22887  df-ntr 23015
This theorem is referenced by:  ntrval  23031  ntrrn  43789  ntrf  43790  dssmapntrcls  43795
  Copyright terms: Public domain W3C validator