![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntrfval | Structured version Visualization version GIF version |
Description: The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
cldval.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ntrfval | β’ (π½ β Top β (intβπ½) = (π₯ β π« π β¦ βͺ (π½ β© π« π₯))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldval.1 | . . . 4 β’ π = βͺ π½ | |
2 | 1 | topopn 22399 | . . 3 β’ (π½ β Top β π β π½) |
3 | pwexg 5375 | . . 3 β’ (π β π½ β π« π β V) | |
4 | mptexg 7219 | . . 3 β’ (π« π β V β (π₯ β π« π β¦ βͺ (π½ β© π« π₯)) β V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 β’ (π½ β Top β (π₯ β π« π β¦ βͺ (π½ β© π« π₯)) β V) |
6 | unieq 4918 | . . . . . 6 β’ (π = π½ β βͺ π = βͺ π½) | |
7 | 6, 1 | eqtr4di 2790 | . . . . 5 β’ (π = π½ β βͺ π = π) |
8 | 7 | pweqd 4618 | . . . 4 β’ (π = π½ β π« βͺ π = π« π) |
9 | ineq1 4204 | . . . . 5 β’ (π = π½ β (π β© π« π₯) = (π½ β© π« π₯)) | |
10 | 9 | unieqd 4921 | . . . 4 β’ (π = π½ β βͺ (π β© π« π₯) = βͺ (π½ β© π« π₯)) |
11 | 8, 10 | mpteq12dv 5238 | . . 3 β’ (π = π½ β (π₯ β π« βͺ π β¦ βͺ (π β© π« π₯)) = (π₯ β π« π β¦ βͺ (π½ β© π« π₯))) |
12 | df-ntr 22515 | . . 3 β’ int = (π β Top β¦ (π₯ β π« βͺ π β¦ βͺ (π β© π« π₯))) | |
13 | 11, 12 | fvmptg 6993 | . 2 β’ ((π½ β Top β§ (π₯ β π« π β¦ βͺ (π½ β© π« π₯)) β V) β (intβπ½) = (π₯ β π« π β¦ βͺ (π½ β© π« π₯))) |
14 | 5, 13 | mpdan 685 | 1 β’ (π½ β Top β (intβπ½) = (π₯ β π« π β¦ βͺ (π½ β© π« π₯))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β© cin 3946 π« cpw 4601 βͺ cuni 4907 β¦ cmpt 5230 βcfv 6540 Topctop 22386 intcnt 22512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-top 22387 df-ntr 22515 |
This theorem is referenced by: ntrval 22531 ntrrn 42858 ntrf 42859 dssmapntrcls 42864 |
Copyright terms: Public domain | W3C validator |