![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntrfval | Structured version Visualization version GIF version |
Description: The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
cldval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrfval | ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 21230 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | pwexg 5128 | . . 3 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
4 | mptexg 6808 | . . 3 ⊢ (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥)) ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥)) ∈ V) |
6 | unieq 4716 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
7 | 6, 1 | syl6eqr 2826 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
8 | 7 | pweqd 4421 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
9 | ineq1 4062 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑗 ∩ 𝒫 𝑥) = (𝐽 ∩ 𝒫 𝑥)) | |
10 | 9 | unieqd 4718 | . . . 4 ⊢ (𝑗 = 𝐽 → ∪ (𝑗 ∩ 𝒫 𝑥) = ∪ (𝐽 ∩ 𝒫 𝑥)) |
11 | 8, 10 | mpteq12dv 5008 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥)) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) |
12 | df-ntr 21344 | . . 3 ⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥))) | |
13 | 11, 12 | fvmptg 6591 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥)) ∈ V) → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) |
14 | 5, 13 | mpdan 674 | 1 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 Vcvv 3409 ∩ cin 3822 𝒫 cpw 4416 ∪ cuni 4708 ↦ cmpt 5004 ‘cfv 6185 Topctop 21217 intcnt 21341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-top 21218 df-ntr 21344 |
This theorem is referenced by: ntrval 21360 ntrrn 39864 ntrf 39865 dssmapntrcls 39870 |
Copyright terms: Public domain | W3C validator |