![]() |
Metamath
Proof Explorer Theorem List (p. 230 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cpmadugsumlemB 22901* | Lemma B for cpmadugsum 22905. (Contributed by AV, 2-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) | ||
Theorem | cpmadugsumlemC 22902* | Lemma C for cpmadugsum 22905. (Contributed by AV, 2-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) | ||
Theorem | cpmadugsumlemF 22903* | Lemma F for cpmadugsum 22905. (Contributed by AV, 7-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) − ((𝑇‘𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||
Theorem | cpmadugsumfi 22904* | The product of the characteristic matrix of a given matrix and its adjunct represented as finite sum. (Contributed by AV, 7-Nov-2019.) (Proof shortened by AV, 29-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = ((𝑌 Σg (𝑖 ∈ (1...𝑠) ↦ ((𝑖 ↑ 𝑋) · ((𝑇‘(𝑏‘(𝑖 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑖))))))) + ((((𝑠 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑠))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))))) | ||
Theorem | cpmadugsum 22905* | The product of the characteristic matrix of a given matrix and its adjunct represented as an infinite sum. (Contributed by AV, 10-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼 × (𝐽‘𝐼)) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | ||
Theorem | cpmidgsum2 22906* | Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as another group sum. (Contributed by AV, 10-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐻 = (𝐾 · 1 ) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))𝐻 = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | ||
Theorem | cpmidg2sum 22907* | Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ × = (.r‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝐼 = ((𝑋 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝑈 = (algSc‘𝑃) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · ((𝑈‘((coe1‘𝐾)‘𝑖)) · 1 )))) = (𝑌 Σg (𝑖 ∈ ℕ0 ↦ ((𝑖 ↑ 𝑋) · (𝐺‘𝑖))))) | ||
Theorem | cpmadumatpolylem1 22908* | Lemma 1 for cpmadumatpoly 22910. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑍 = (var1‘𝑅) & ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) ∈ (𝐵 ↑m ℕ0)) | ||
Theorem | cpmadumatpolylem2 22909* | Lemma 2 for cpmadumatpoly 22910. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑍 = (var1‘𝑅) & ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑈 ∘ 𝐺) finSupp (0g‘𝐴)) | ||
Theorem | cpmadumatpoly 22910* | The product of the characteristic matrix of a given matrix and its adjunct represented as a polynomial over matrices. (Contributed by AV, 20-Nov-2019.) (Revised by AV, 7-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑍 = (var1‘𝑅) & ⊢ 𝐷 = ((𝑍 · 1 ) − (𝑇‘𝑀)) & ⊢ 𝐽 = (𝑁 maAdju 𝑃) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝑄 = (Poly1‘𝐴) & ⊢ 𝑋 = (var1‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝑄) & ⊢ ↑ = (.g‘(mulGrp‘𝑄)) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) & ⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐼‘(𝐷 × (𝐽‘𝐷))) = (𝑄 Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺‘𝑛)) ∗ (𝑛 ↑ 𝑋))))) | ||
Theorem | cayhamlem2 22911 | Lemma for cayhamlem3 22914. (Contributed by AV, 24-Nov-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ · = (.r‘𝐴) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐻 ∈ (𝐾 ↑m ℕ0) ∧ 𝐿 ∈ ℕ0)) → ((𝐻‘𝐿) ∗ (𝐿 ↑ 𝑀)) = ((𝐿 ↑ 𝑀) · ((𝐻‘𝐿) ∗ 1 ))) | ||
Theorem | chcoeffeqlem 22912* | Lemma for chcoeffeq 22913. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 7-Dec-2019.) (Revised by AV, 15-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((Poly1‘𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((𝑈‘(𝐺‘𝑛))( ·𝑠 ‘(Poly1‘𝐴))(𝑛(.g‘(mulGrp‘(Poly1‘𝐴)))(var1‘𝐴))))) = ((Poly1‘𝐴) Σg (𝑛 ∈ ℕ0 ↦ ((((coe1‘𝐾)‘𝑛) ∗ 1 )( ·𝑠 ‘(Poly1‘𝐴))(𝑛(.g‘(mulGrp‘(Poly1‘𝐴)))(var1‘𝐴))))) → ∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ))) | ||
Theorem | chcoeffeq 22913* | The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019.) (Proof shortened by AV, 8-Dec-2019.) (Revised by AV, 15-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 )) | ||
Theorem | cayhamlem3 22914* | Lemma for cayhamlem4 22915. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))))) | ||
Theorem | cayhamlem4 22915* | Lemma for cayleyhamilton 22917. (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (𝐶‘𝑀) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝑈‘(𝑌 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛𝐸(𝑇‘𝑀)) × (𝐺‘𝑛)))))) | ||
Theorem | cayleyhamilton0 22916* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation". This version of cayleyhamilton 22917 provides definitions not used in the theorem itself, but in its proof to make it clearer, more readable and shorter compared with a proof without them (see cayleyhamiltonALT 22918)! (Contributed by AV, 25-Nov-2019.) (Revised by AV, 15-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 1 = (1r‘𝐴) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑌 = (𝑁 Mat 𝑃) & ⊢ × = (.r‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝑍 = (0g‘𝑌) & ⊢ 𝑊 = (Base‘𝑌) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑌)) & ⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, (𝑍 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 𝑍, ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) & ⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) | ||
Theorem | cayleyhamilton 22917* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", see theorem 7.8 in [Roman] p. 170 (without proof!), or theorem 3.1 in [Lang] p. 561. In other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. This is Metamath 100 proof #49. (Contributed by Alexander van der Vekens, 25-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) | ||
Theorem | cayleyhamiltonALT 22918* | Alternate proof of cayleyhamilton 22917, the Cayley-Hamilton theorem. This proof does not use cayleyhamilton0 22916 directly, but has the same structure as the proof of cayleyhamilton0 22916. In contrast to the proof of cayleyhamilton0 22916, only the definitions required to formulate the theorem itself are used, causing the definitions used in the lemmas being expanded, which makes the proof longer and more difficult to read. (Contributed by AV, 25-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) | ||
Theorem | cayleyhamilton1 22919* | The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 22917, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (𝐹‘𝑛), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝐴) & ⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) & ⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) & ⊢ ∗ = ( ·𝑠 ‘𝐴) & ⊢ ↑ = (.g‘(mulGrp‘𝐴)) & ⊢ 𝐿 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) & ⊢ 𝑍 = (0g‘𝑅) ⇒ ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) | ||
A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union, see toponuni 22941), and it may sometimes be more convenient to consider topologies without reference to the underlying set. This is why we define successively the class of topologies (df-top 22921), then the function which associates with a set the set of topologies on it (df-topon 22938), and finally the class of topological spaces, as extensible structures having an underlying set and a topology on it (df-topsp 22960). Of course, a topology is the same thing as a topology on a set (see toprntopon 22952). | ||
Syntax | ctop 22920 | Syntax for the class of topologies. |
class Top | ||
Definition | df-top 22921* |
Define the class of topologies. It is a proper class (see topnex 23024).
See istopg 22922 and istop2g 22923 for the corresponding characterizations,
using respectively binary intersections like in this definition and
nonempty finite intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} | ||
Theorem | istopg 22922* |
Express the predicate "𝐽 is a topology". See istop2g 22923 for another
characterization using nonempty finite intersections instead of binary
intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | ||
Theorem | istop2g 22923* | Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 22922. (Contributed by NM, 19-Jul-2006.) |
⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥((𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐽)))) | ||
Theorem | uniopn 22924 | The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) | ||
Theorem | iunopn 22925* | The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.) |
⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | ||
Theorem | inopn 22926 | The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||
Theorem | fitop 22927 | A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009.) |
⊢ (𝐽 ∈ Top → (fi‘𝐽) = 𝐽) | ||
Theorem | fiinopn 22928 | The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) |
⊢ (𝐽 ∈ Top → ((𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∩ 𝐴 ∈ 𝐽)) | ||
Theorem | iinopn 22929* | The intersection of a nonempty finite family of open sets is open. (Contributed by Mario Carneiro, 14-Sep-2014.) |
⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | ||
Theorem | unopn 22930 | The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) | ||
Theorem | 0opn 22931 | The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | ||
Theorem | 0ntop 22932 | The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
⊢ ¬ ∅ ∈ Top | ||
Theorem | topopn 22933 | The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) | ||
Theorem | eltopss 22934 | A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
Theorem | riinopn 22935* | A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) | ||
Theorem | rintopn 22936 | A finite relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽 ∧ 𝐴 ∈ Fin) → (𝑋 ∩ ∩ 𝐴) ∈ 𝐽) | ||
Syntax | ctopon 22937 | Syntax for the function of topologies on sets. |
class TopOn | ||
Definition | df-topon 22938* | Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | ||
Theorem | istopon 22939 | Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | ||
Theorem | topontop 22940 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | ||
Theorem | toponuni 22941 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | ||
Theorem | topontopi 22942 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐽 ∈ Top | ||
Theorem | toponunii 22943 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐵 = ∪ 𝐽 | ||
Theorem | toptopon 22944 | Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | ||
Theorem | toptopon2 22945 | A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
Theorem | topontopon 22946 | A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
Theorem | funtopon 22947 | The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.) |
⊢ Fun TopOn | ||
Theorem | toponrestid 22948 | Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
⊢ 𝐴 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐴 = (𝐴 ↾t 𝐵) | ||
Theorem | toponsspwpw 22949 | The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) |
⊢ (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴 | ||
Theorem | dmtopon 22950 | The domain of TopOn is the universal class V. (Contributed by BJ, 29-Apr-2021.) |
⊢ dom TopOn = V | ||
Theorem | fntopon 22951 | The class TopOn is a function with domain the universal class V. Analogue for topologies of fnmre 17649 for Moore collections. (Contributed by BJ, 29-Apr-2021.) |
⊢ TopOn Fn V | ||
Theorem | toprntopon 22952 | A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.) |
⊢ Top = ∪ ran TopOn | ||
Theorem | toponmax 22953 | The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) | ||
Theorem | toponss 22954 | A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
Theorem | toponcom 22955 | If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) | ||
Theorem | toponcomb 22956 | Biconditional form of toponcom 22955. (Contributed by BJ, 5-Dec-2021.) |
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) | ||
Theorem | topgele 22957 | The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | ||
Theorem | topsn 22958 | The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn 4924). (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
⊢ (𝐽 ∈ (TopOn‘{𝐴}) → 𝐽 = 𝒫 {𝐴}) | ||
Syntax | ctps 22959 | Syntax for the class of topological spaces. |
class TopSp | ||
Definition | df-topsp 22960 | Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.) |
⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | ||
Theorem | istps 22961 | Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) | ||
Theorem | istps2 22962 | Express the predicate "is a topological space." (Contributed by NM, 20-Oct-2012.) |
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) | ||
Theorem | tpsuni 22963 | The base set of a topological space. (Contributed by FL, 27-Jun-2014.) |
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) | ||
Theorem | tpstop 22964 | The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.) |
⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) | ||
Theorem | tpspropd 22965 | A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | ||
Theorem | tpsprop2d 22966 | A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | ||
Theorem | topontopn 22967 | Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) | ||
Theorem | tsettps 22968 | If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
Theorem | istpsi 22969 | Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = 𝐽 & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
Theorem | eltpsg 22970 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by AV, 31-Oct-2024.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
Theorem | eltpsgOLD 22971 | Obsolete version of eltpsg 22970 as of 31-Oct-2024. Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
Theorem | eltpsi 22972 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.) |
⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
Syntax | ctb 22973 | Syntax for the class of topological bases. |
class TopBases | ||
Definition | df-bases 22974* | Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 22976). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.) |
⊢ TopBases = {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} | ||
Theorem | isbasisg 22975* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) | ||
Theorem | isbasis2g 22976* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) | ||
Theorem | isbasis3g 22977* | Express the predicate "the set 𝐵 is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.) |
⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ ∪ 𝐵∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))))) | ||
Theorem | basis1 22978 | Property of a basis. (Contributed by NM, 16-Jul-2006.) |
⊢ ((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) | ||
Theorem | basis2 22979* | Property of a basis. (Contributed by NM, 17-Jul-2006.) |
⊢ (((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵) ∧ (𝐷 ∈ 𝐵 ∧ 𝐴 ∈ (𝐶 ∩ 𝐷))) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷))) | ||
Theorem | fiinbas 22980* | If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) | ||
Theorem | basdif0 22981 | A basis is not affected by the addition or removal of the empty set. (Contributed by Mario Carneiro, 28-Aug-2015.) |
⊢ ((𝐵 ∖ {∅}) ∈ TopBases ↔ 𝐵 ∈ TopBases) | ||
Theorem | baspartn 22982* | A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ ((𝑃 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → 𝑃 ∈ TopBases) | ||
Theorem | tgval 22983* | The topology generated by a basis. See also tgval2 22984 and tgval3 22991. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | ||
Theorem | tgval2 22984* | Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 22997) that (topGen‘𝐵) is indeed a topology (on ∪ 𝐵, see unitg 22995). See also tgval 22983 and tgval3 22991. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))}) | ||
Theorem | eltg 22985 | Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | ||
Theorem | eltg2 22986* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | ||
Theorem | eltg2b 22987* | Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | ||
Theorem | eltg4i 22988 | An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | ||
Theorem | eltg3i 22989 | The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) | ||
Theorem | eltg3 22990* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | ||
Theorem | tgval3 22991* | Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 22983 and tgval2 22984. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)}) | ||
Theorem | tg1 22992 | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) | ||
Theorem | tg2 22993* | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) | ||
Theorem | bastg 22994 | A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | ||
Theorem | unitg 22995 | The topology generated by a basis 𝐵 is a topology on ∪ 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) | ||
Theorem | tgss 22996 | Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) |
⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | ||
Theorem | tgcl 22997 | Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.) |
⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | ||
Theorem | tgclb 22998 | The property tgcl 22997 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) | ||
Theorem | tgtopon 22999 | A basis generates a topology on ∪ 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) | ||
Theorem | topbas 23000 | A topology is its own basis. (Contributed by NM, 17-Jul-2006.) |
⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |