| Metamath
Proof Explorer Theorem List (p. 230 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | tg2 22901* | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
| ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) | ||
| Theorem | bastg 22902 | A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | ||
| Theorem | unitg 22903 | The topology generated by a basis 𝐵 is a topology on ∪ 𝐵. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.) |
| ⊢ (𝐵 ∈ 𝑉 → ∪ (topGen‘𝐵) = ∪ 𝐵) | ||
| Theorem | tgss 22904 | Subset relation for generated topologies. (Contributed by NM, 7-May-2007.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)) | ||
| Theorem | tgcl 22905 | Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ Top) | ||
| Theorem | tgclb 22906 | The property tgcl 22905 can be reversed: if the topology generated by 𝐵 is actually a topology, then 𝐵 must be a topological basis. This yields an alternative definition of TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ (𝐵 ∈ TopBases ↔ (topGen‘𝐵) ∈ Top) | ||
| Theorem | tgtopon 22907 | A basis generates a topology on ∪ 𝐵. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐵 ∈ TopBases → (topGen‘𝐵) ∈ (TopOn‘∪ 𝐵)) | ||
| Theorem | topbas 22908 | A topology is its own basis. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → 𝐽 ∈ TopBases) | ||
| Theorem | tgtop 22909 | A topology is its own basis. (Contributed by NM, 18-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | ||
| Theorem | eltop 22910 | Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ 𝐴 ⊆ ∪ (𝐽 ∩ 𝒫 𝐴))) | ||
| Theorem | eltop2 22911* | Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | ||
| Theorem | eltop3 22912* | Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) | ||
| Theorem | fibas 22913 | A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (fi‘𝐴) ∈ TopBases | ||
| Theorem | tgdom 22914 | A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) | ||
| Theorem | tgiun 22915* | The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) | ||
| Theorem | tgidm 22916 | The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵)) | ||
| Theorem | bastop 22917 | Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.) |
| ⊢ (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵)) | ||
| Theorem | tgtop11 22918 | The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾) | ||
| Theorem | 0top 22919 | The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.) |
| ⊢ (𝐽 ∈ Top → (∪ 𝐽 = ∅ ↔ 𝐽 = {∅})) | ||
| Theorem | en1top 22920 | {∅} is the only topology with one element. (Contributed by FL, 18-Aug-2008.) |
| ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) | ||
| Theorem | en2top 22921 | If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))) | ||
| Theorem | tgss3 22922 | A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) | ||
| Theorem | tgss2 22923* | A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 ∈ ∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
| Theorem | basgen 22924 | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽) | ||
| Theorem | basgen2 22925* | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) | ||
| Theorem | 2basgen 22926 | Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) | ||
| Theorem | tgfiss 22927 | If a subbase is included into a topology, so is the generated topology. (Contributed by FL, 20-Apr-2012.) (Proof shortened by Mario Carneiro, 10-Jan-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽) | ||
| Theorem | tgdif0 22928 | A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) | ||
| Theorem | bastop1 22929* | A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | ||
| Theorem | bastop2 22930* | A version of bastop1 22929 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.) |
| ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) | ||
| Theorem | distop 22931 | The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | ||
| Theorem | topnex 22932 | The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7751; an alternate proof uses indiscrete topologies (see indistop 22938) and the analogue of pwnex 7751 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7749). (Contributed by BJ, 2-May-2021.) |
| ⊢ Top ∉ V | ||
| Theorem | distopon 22933 | The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | ||
| Theorem | sn0topon 22934 | The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ {∅} ∈ (TopOn‘∅) | ||
| Theorem | sn0top 22935 | The singleton of the empty set is a topology. (Contributed by Stefan Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro, 13-Aug-2015.) |
| ⊢ {∅} ∈ Top | ||
| Theorem | indislem 22936 | A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | ||
| Theorem | indistopon 22937 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴)) | ||
| Theorem | indistop 22938 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ {∅, 𝐴} ∈ Top | ||
| Theorem | indisuni 22939 | The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} | ||
| Theorem | fctop 22940* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | fctop2 22941* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (This version of fctop 22940 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | cctop 22942* | The countable complement topology on a set 𝐴. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | ppttop 22943* | The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | pptbas 22944* | The particular point topology is generated by a basis consisting of pairs {𝑥, 𝑃} for each 𝑥 ∈ 𝐴. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} = (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}))) | ||
| Theorem | epttop 22945* | The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) | ||
| Theorem | indistpsx 22946 | The indiscrete topology on a set 𝐴 expressed as a topological space, using explicit structure component references. Compare with indistps 22947 and indistps2 22948. The advantage of this version is that the actual function for the structure is evident, and df-ndx 17211 is not needed, nor any other special definition outside of basic set theory. The disadvantage is that if the indices of the component definitions df-base 17227 and df-tset 17288 are changed in the future, this theorem will also have to be changed. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use indistps 22947 instead. (New usage is discouraged.) (Contributed by FL, 19-Jul-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈1, 𝐴〉, 〈9, {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistps 22947 | The indiscrete topology on a set 𝐴 expressed as a topological space, using implicit structure indices. The advantage of this version over indistpsx 22946 is that it is independent of the indices of the component definitions df-base 17227 and df-tset 17288, and if they are changed in the future, this theorem will not be affected. The advantage over indistps2 22948 is that it is easy to eliminate the hypotheses with eqid 2735 and vtoclg 3533 to result in a closed theorem. Theorems indistpsALT 22949 and indistps2ALT 22950 show that the two forms can be derived from each other. (Contributed by FL, 19-Jul-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistps2 22948 | The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22947. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22949 and indistps2ALT 22950 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
| ⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = {∅, 𝐴} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistpsALT 22949 | The indiscrete topology on a set 𝐴 expressed as a topological space. Here we show how to derive the structural version indistps 22947 from the direct component assignment version indistps2 22948. (Contributed by NM, 24-Oct-2012.) (Revised by AV, 31-Oct-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistps2ALT 22950 | The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 22948 from the structural version indistps 22947. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = {∅, 𝐴} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | distps 22951 | The discrete topology on a set 𝐴 expressed as a topological space. (Contributed by FL, 20-Aug-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝒫 𝐴〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Syntax | ccld 22952 | Extend class notation with the set of closed sets of a topology. |
| class Clsd | ||
| Syntax | cnt 22953 | Extend class notation with interior of a subset of a topology base set. |
| class int | ||
| Syntax | ccl 22954 | Extend class notation with closure of a subset of a topology base set. |
| class cls | ||
| Definition | df-cld 22955* | Define a function on topologies whose value is the set of closed sets of the topology. (Contributed by NM, 2-Oct-2006.) |
| ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | ||
| Definition | df-ntr 22956* | Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval 22972. (Contributed by NM, 10-Sep-2006.) |
| ⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥))) | ||
| Definition | df-cls 22957* | Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval 22973. (Contributed by NM, 3-Oct-2006.) |
| ⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) | ||
| Theorem | fncld 22958 | The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ Clsd Fn Top | ||
| Theorem | cldval 22959* | The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) | ||
| Theorem | ntrfval 22960* | The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) | ||
| Theorem | clsfval 22961* | The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) | ||
| Theorem | cldrcl 22962 | Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | ||
| Theorem | iscld 22963 | The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) | ||
| Theorem | iscld2 22964 | A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) | ||
| Theorem | cldss 22965 | A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) | ||
| Theorem | cldss2 22966 | The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 | ||
| Theorem | cldopn 22967 | The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) | ||
| Theorem | isopn2 22968 | A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) | ||
| Theorem | opncld 22969 | The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽)) | ||
| Theorem | difopn 22970 | The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) | ||
| Theorem | topcld 22971 | The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) | ||
| Theorem | ntrval 22972 | The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) | ||
| Theorem | clsval 22973* | The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) | ||
| Theorem | 0cld 22974 | The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.) |
| ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | ||
| Theorem | iincld 22975* | The indexed intersection of a collection 𝐵(𝑥) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | ||
| Theorem | intcld 22976 | The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | uncld 22977 | The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) |
| ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) | ||
| Theorem | cldcls 22978 | A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.) |
| ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) | ||
| Theorem | incld 22979 | The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ 𝐵) ∈ (Clsd‘𝐽)) | ||
| Theorem | riincld 22980* | An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) | ||
| Theorem | iuncld 22981* | A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | ||
| Theorem | unicld 22982 | A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∪ 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | clscld 22983 | The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) | ||
| Theorem | clsf 22984 | The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) | ||
| Theorem | ntropn 22985 | The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) | ||
| Theorem | clsval2 22986 | Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) | ||
| Theorem | ntrval2 22987 | Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) | ||
| Theorem | ntrdif 22988 | An interior of a complement is the complement of the closure. This set is also known as the exterior of 𝐴. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴))) | ||
| Theorem | clsdif 22989 | A closure of a complement is the complement of the interior. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) | ||
| Theorem | clsss 22990 | Subset relationship for closure. (Contributed by NM, 10-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) | ||
| Theorem | ntrss 22991 | Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) | ||
| Theorem | sscls 22992 | A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) | ||
| Theorem | ntrss2 22993 | A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) | ||
| Theorem | ssntr 22994 | An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) | ||
| Theorem | clsss3 22995 | The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) | ||
| Theorem | ntrss3 22996 | The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) | ||
| Theorem | ntrin 22997 | A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵))) | ||
| Theorem | cmclsopn 22998 | The complement of a closure is open. (Contributed by NM, 11-Sep-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) | ||
| Theorem | cmntrcld 22999 | The complement of an interior is closed. (Contributed by NM, 1-Oct-2007.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘𝑆)) ∈ (Clsd‘𝐽)) | ||
| Theorem | iscld3 23000 | A subset is closed iff it equals its own closure. (Contributed by NM, 2-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) = 𝑆)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |