| Metamath
Proof Explorer Theorem List (p. 230 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | eltop3 22901* | Membership in a topology. (Contributed by NM, 19-Jul-2006.) |
| ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) | ||
| Theorem | fibas 22902 | A collection of finite intersections is a basis. The initial set is a subbasis for the topology. (Contributed by Jeff Hankins, 25-Aug-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| ⊢ (fi‘𝐴) ∈ TopBases | ||
| Theorem | tgdom 22903 | A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ≼ 𝒫 𝐵) | ||
| Theorem | tgiun 22904* | The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) → ∪ 𝑥 ∈ 𝐴 𝐶 ∈ (topGen‘𝐵)) | ||
| Theorem | tgidm 22905 | The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵)) | ||
| Theorem | bastop 22906 | Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.) |
| ⊢ (𝐵 ∈ TopBases → (𝐵 ∈ Top ↔ (topGen‘𝐵) = 𝐵)) | ||
| Theorem | tgtop11 22907 | The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ (topGen‘𝐽) = (topGen‘𝐾)) → 𝐽 = 𝐾) | ||
| Theorem | 0top 22908 | The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.) |
| ⊢ (𝐽 ∈ Top → (∪ 𝐽 = ∅ ↔ 𝐽 = {∅})) | ||
| Theorem | en1top 22909 | {∅} is the only topology with one element. (Contributed by FL, 18-Aug-2008.) |
| ⊢ (𝐽 ∈ Top → (𝐽 ≈ 1o ↔ 𝐽 = {∅})) | ||
| Theorem | en2top 22910 | If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2o ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))) | ||
| Theorem | tgss3 22911 | A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) | ||
| Theorem | tgss2 22912* | A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪ 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 ∈ ∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | ||
| Theorem | basgen 22913 | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = 𝐽) | ||
| Theorem | basgen2 22914* | Given a topology 𝐽, show that a subset 𝐵 satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) → (topGen‘𝐵) = 𝐽) | ||
| Theorem | 2basgen 22915 | Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) = (topGen‘𝐶)) | ||
| Theorem | tgfiss 22916 | If a subbase is included into a topology, so is the generated topology. (Contributed by FL, 20-Apr-2012.) (Proof shortened by Mario Carneiro, 10-Jan-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (topGen‘(fi‘𝐴)) ⊆ 𝐽) | ||
| Theorem | tgdif0 22917 | A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| ⊢ (topGen‘(𝐵 ∖ {∅})) = (topGen‘𝐵) | ||
| Theorem | bastop1 22918* | A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom "(topGen‘𝐵) = 𝐽 " to express "𝐵 is a basis for topology 𝐽 " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽) → ((topGen‘𝐵) = 𝐽 ↔ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | ||
| Theorem | bastop2 22919* | A version of bastop1 22918 that doesn't have 𝐵 ⊆ 𝐽 in the antecedent. (Contributed by NM, 3-Feb-2008.) |
| ⊢ (𝐽 ∈ Top → ((topGen‘𝐵) = 𝐽 ↔ (𝐵 ⊆ 𝐽 ∧ ∀𝑥 ∈ 𝐽 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) | ||
| Theorem | distop 22920 | The discrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) | ||
| Theorem | topnex 22921 | The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 7701; an alternate proof uses indiscrete topologies (see indistop 22927) and the analogue of pwnex 7701 with pairs {∅, 𝑥} instead of power sets 𝒫 𝑥 (that analogue is also a consequence of abnex 7699). (Contributed by BJ, 2-May-2021.) |
| ⊢ Top ∉ V | ||
| Theorem | distopon 22922 | The discrete topology on a set 𝐴, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | ||
| Theorem | sn0topon 22923 | The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ {∅} ∈ (TopOn‘∅) | ||
| Theorem | sn0top 22924 | The singleton of the empty set is a topology. (Contributed by Stefan Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro, 13-Aug-2015.) |
| ⊢ {∅} ∈ Top | ||
| Theorem | indislem 22925 | A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | ||
| Theorem | indistopon 22926 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {∅, 𝐴} ∈ (TopOn‘𝐴)) | ||
| Theorem | indistop 22927 | The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ {∅, 𝐴} ∈ Top | ||
| Theorem | indisuni 22928 | The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ( I ‘𝐴) = ∪ {∅, 𝐴} | ||
| Theorem | fctop 22929* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | fctop2 22930* | The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (This version of fctop 22929 requires the Axiom of Infinity.) (Contributed by FL, 20-Aug-2006.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≺ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | cctop 22931* | The countable complement topology on a set 𝐴. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴 ∖ 𝑥) ≼ ω ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | ppttop 22932* | The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) | ||
| Theorem | pptbas 22933* | The particular point topology is generated by a basis consisting of pairs {𝑥, 𝑃} for each 𝑥 ∈ 𝐴. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} = (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}))) | ||
| Theorem | epttop 22934* | The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 → 𝑥 = 𝐴)} ∈ (TopOn‘𝐴)) | ||
| Theorem | indistpsx 22935 | The indiscrete topology on a set 𝐴 expressed as a topological space, using explicit structure component references. Compare with indistps 22936 and indistps2 22937. The advantage of this version is that the actual function for the structure is evident, and df-ndx 17115 is not needed, nor any other special definition outside of basic set theory. The disadvantage is that if the indices of the component definitions df-base 17131 and df-tset 17190 are changed in the future, this theorem will also have to be changed. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use indistps 22936 instead. (New usage is discouraged.) (Contributed by FL, 19-Jul-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈1, 𝐴〉, 〈9, {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistps 22936 | The indiscrete topology on a set 𝐴 expressed as a topological space, using implicit structure indices. The advantage of this version over indistpsx 22935 is that it is independent of the indices of the component definitions df-base 17131 and df-tset 17190, and if they are changed in the future, this theorem will not be affected. The advantage over indistps2 22937 is that it is easy to eliminate the hypotheses with eqid 2733 and vtoclg 3509 to result in a closed theorem. Theorems indistpsALT 22938 and indistps2ALT 22939 show that the two forms can be derived from each other. (Contributed by FL, 19-Jul-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistps2 22937 | The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Compare with indistps 22936. The advantage of this version is that it is the shortest to state and easiest to work with in most situations. Theorems indistpsALT 22938 and indistps2ALT 22939 show that the two forms can be derived from each other. (Contributed by NM, 24-Oct-2012.) |
| ⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = {∅, 𝐴} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistpsALT 22938 | The indiscrete topology on a set 𝐴 expressed as a topological space. Here we show how to derive the structural version indistps 22936 from the direct component assignment version indistps2 22937. (Contributed by NM, 24-Oct-2012.) (Revised by AV, 31-Oct-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | indistps2ALT 22939 | The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 22937 from the structural version indistps 22936. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = {∅, 𝐴} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | distps 22940 | The discrete topology on a set 𝐴 expressed as a topological space. (Contributed by FL, 20-Aug-2006.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝒫 𝐴〉} ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Syntax | ccld 22941 | Extend class notation with the set of closed sets of a topology. |
| class Clsd | ||
| Syntax | cnt 22942 | Extend class notation with interior of a subset of a topology base set. |
| class int | ||
| Syntax | ccl 22943 | Extend class notation with closure of a subset of a topology base set. |
| class cls | ||
| Definition | df-cld 22944* | Define a function on topologies whose value is the set of closed sets of the topology. (Contributed by NM, 2-Oct-2006.) |
| ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) | ||
| Definition | df-ntr 22945* | Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval 22961. (Contributed by NM, 10-Sep-2006.) |
| ⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ (𝑗 ∩ 𝒫 𝑥))) | ||
| Definition | df-cls 22946* | Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval 22962. (Contributed by NM, 3-Oct-2006.) |
| ⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) | ||
| Theorem | fncld 22947 | The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ Clsd Fn Top | ||
| Theorem | cldval 22948* | The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ 𝐽}) | ||
| Theorem | ntrfval 22949* | The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑥))) | ||
| Theorem | clsfval 22950* | The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) | ||
| Theorem | cldrcl 22951 | Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | ||
| Theorem | iscld 22952 | The predicate "the class 𝑆 is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) | ||
| Theorem | iscld2 22953 | A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ 𝑆) ∈ 𝐽)) | ||
| Theorem | cldss 22954 | A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) | ||
| Theorem | cldss2 22955 | The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 | ||
| Theorem | cldopn 22956 | The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) | ||
| Theorem | isopn2 22957 | A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) | ||
| Theorem | opncld 22958 | The complement of an open set is closed. (Contributed by NM, 6-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽)) | ||
| Theorem | difopn 22959 | The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∖ 𝐵) ∈ 𝐽) | ||
| Theorem | topcld 22960 | The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) | ||
| Theorem | ntrval 22961 | The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) | ||
| Theorem | clsval 22962* | The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = ∩ {𝑥 ∈ (Clsd‘𝐽) ∣ 𝑆 ⊆ 𝑥}) | ||
| Theorem | 0cld 22963 | The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.) |
| ⊢ (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽)) | ||
| Theorem | iincld 22964* | The indexed intersection of a collection 𝐵(𝑥) of closed sets is closed. Theorem 6.1(2) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | ||
| Theorem | intcld 22965 | The intersection of a set of closed sets is closed. (Contributed by NM, 5-Oct-2006.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∩ 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | uncld 22966 | The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.) |
| ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∪ 𝐵) ∈ (Clsd‘𝐽)) | ||
| Theorem | cldcls 22967 | A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.) |
| ⊢ (𝑆 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) = 𝑆) | ||
| Theorem | incld 22968 | The intersection of two closed sets is closed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.) |
| ⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ 𝐵 ∈ (Clsd‘𝐽)) → (𝐴 ∩ 𝐵) ∈ (Clsd‘𝐽)) | ||
| Theorem | riincld 22969* | An indexed relative intersection of closed sets is closed. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ (Clsd‘𝐽)) | ||
| Theorem | iuncld 22970* | A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ (Clsd‘𝐽)) | ||
| Theorem | unicld 22971 | A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝐴 ⊆ (Clsd‘𝐽)) → ∪ 𝐴 ∈ (Clsd‘𝐽)) | ||
| Theorem | clscld 22972 | The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) | ||
| Theorem | clsf 22973 | The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (cls‘𝐽):𝒫 𝑋⟶(Clsd‘𝐽)) | ||
| Theorem | ntropn 22974 | The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ∈ 𝐽) | ||
| Theorem | clsval2 22975 | Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑋 ∖ ((int‘𝐽)‘(𝑋 ∖ 𝑆)))) | ||
| Theorem | ntrval2 22976 | Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ 𝑆)))) | ||
| Theorem | ntrdif 22977 | An interior of a complement is the complement of the closure. This set is also known as the exterior of 𝐴. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴))) | ||
| Theorem | clsdif 22978 | A closure of a complement is the complement of the interior. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((int‘𝐽)‘𝐴))) | ||
| Theorem | clsss 22979 | Subset relationship for closure. (Contributed by NM, 10-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((cls‘𝐽)‘𝑇) ⊆ ((cls‘𝐽)‘𝑆)) | ||
| Theorem | ntrss 22980 | Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) | ||
| Theorem | sscls 22981 | A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) | ||
| Theorem | ntrss2 22982 | A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑆) | ||
| Theorem | ssntr 22983 | An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑂 ∈ 𝐽 ∧ 𝑂 ⊆ 𝑆)) → 𝑂 ⊆ ((int‘𝐽)‘𝑆)) | ||
| Theorem | clsss3 22984 | The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) | ||
| Theorem | ntrss3 22985 | The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ 𝑋) | ||
| Theorem | ntrin 22986 | A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋) → ((int‘𝐽)‘(𝐴 ∩ 𝐵)) = (((int‘𝐽)‘𝐴) ∩ ((int‘𝐽)‘𝐵))) | ||
| Theorem | cmclsopn 22987 | The complement of a closure is open. (Contributed by NM, 11-Sep-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) | ||
| Theorem | cmntrcld 22988 | The complement of an interior is closed. (Contributed by NM, 1-Oct-2007.) (Proof shortened by OpenAI, 3-Jul-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((int‘𝐽)‘𝑆)) ∈ (Clsd‘𝐽)) | ||
| Theorem | iscld3 22989 | A subset is closed iff it equals its own closure. (Contributed by NM, 2-Oct-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) = 𝑆)) | ||
| Theorem | iscld4 22990 | A subset is closed iff it contains its own closure. (Contributed by NM, 31-Jan-2008.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆)) | ||
| Theorem | isopn3 22991 | A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) | ||
| Theorem | clsidm 22992 | The closure operation is idempotent. (Contributed by NM, 2-Oct-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆)) | ||
| Theorem | ntridm 22993 | The interior operation is idempotent. (Contributed by NM, 2-Oct-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑆)) = ((int‘𝐽)‘𝑆)) | ||
| Theorem | clstop 22994 | The closure of a topology's underlying set is the entire set. (Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon, 11-Mar-2023.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((cls‘𝐽)‘𝑋) = 𝑋) | ||
| Theorem | ntrtop 22995 | The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘𝑋) = 𝑋) | ||
| Theorem | 0ntr 22996 | A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑋 ≠ ∅) ∧ (𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑆) = ∅)) → (𝑋 ∖ 𝑆) ≠ ∅) | ||
| Theorem | clsss2 22997 | If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) | ||
| Theorem | elcls 22998* | Membership in a closure. Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 22-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) | ||
| Theorem | elcls2 22999* | Membership in a closure. (Contributed by NM, 5-Mar-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)))) | ||
| Theorem | clsndisj 23000 | Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |