HomeHome Metamath Proof Explorer
Theorem List (p. 230 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 22901-23000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremopnfbas 22901* The collection of open supersets of a nonempty set in a topology is a neighborhoods of the set, one of the motivations for the filter concept. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
𝑋 = 𝐽       ((𝐽 ∈ Top ∧ 𝑆𝑋𝑆 ≠ ∅) → {𝑥𝐽𝑆𝑥} ∈ (fBas‘𝑋))
 
Theoremtrfbas2 22902 Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ¬ ∅ ∈ (𝐹t 𝐴)))
 
Theoremtrfbas 22903* Conditions for the trace of a filter base 𝐹 to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015.)
((𝐹 ∈ (fBas‘𝑌) ∧ 𝐴𝑌) → ((𝐹t 𝐴) ∈ (fBas‘𝐴) ↔ ∀𝑣𝐹 (𝑣𝐴) ≠ ∅))
 
12.2.2  Filters
 
Syntaxcfil 22904 Extend class notation with the set of filters on a set.
class Fil
 
Definitiondf-fil 22905* The set of filters on a set. Definition 1 (axioms FI, FIIa, FIIb, FIII) of [BourbakiTop1] p. I.36. Filters are used to define the concept of limit in the general case. They are a generalization of the idea of neighborhoods. Suppose you are in . With neighborhoods you can express the idea of a variable that tends to a specific number but you can't express the idea of a variable that tends to infinity. Filters relax the "axioms" of neighborhoods and then succeed in expressing the idea of something that tends to infinity. Filters were invented by Cartan in 1937 and made famous by Bourbaki in his treatise. A notion similar to the notion of filter is the concept of net invented by Moore and Smith in 1922. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)})
 
Theoremisfil 22906* The predicate "is a filter." (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.)
(𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝐹)))
 
Theoremfilfbas 22907 A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
(𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
 
Theorem0nelfil 22908 The empty set doesn't belong to a filter. (Contributed by FL, 20-Jul-2007.) (Revised by Mario Carneiro, 28-Jul-2015.)
(𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
 
Theoremfileln0 22909 An element of a filter is nonempty. (Contributed by FL, 24-May-2011.) (Revised by Mario Carneiro, 28-Jul-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴 ≠ ∅)
 
Theoremfilsspw 22910 A filter is a subset of the power set of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
(𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
 
Theoremfilelss 22911 An element of a filter is a subset of the base set. (Contributed by Stefan O'Rear, 28-Jul-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
 
Theoremfilss 22912 A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐵𝑋𝐴𝐵)) → 𝐵𝐹)
 
Theoremfilin 22913 A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)
 
Theoremfiltop 22914 The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
(𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
 
Theoremisfil2 22915* Derive the standard axioms of a filter. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (Fil‘𝑋) ↔ ((𝐹 ⊆ 𝒫 𝑋 ∧ ¬ ∅ ∈ 𝐹𝑋𝐹) ∧ ∀𝑥 ∈ 𝒫 𝑋(∃𝑦𝐹 𝑦𝑥𝑥𝐹) ∧ ∀𝑥𝐹𝑦𝐹 (𝑥𝑦) ∈ 𝐹))
 
Theoremisfildlem 22916* Lemma for isfild 22917. (Contributed by Mario Carneiro, 1-Dec-2013.)
(𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))    &   (𝜑𝐴𝑉)       (𝜑 → (𝐵𝐹 ↔ (𝐵𝐴[𝐵 / 𝑥]𝜓)))
 
Theoremisfild 22917* Sufficient condition for a set of the form {𝑥 ∈ 𝒫 𝐴𝜑} to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.) (Revised by AV, 10-Apr-2024.)
(𝜑 → (𝑥𝐹 ↔ (𝑥𝐴𝜓)))    &   (𝜑𝐴𝑉)    &   (𝜑[𝐴 / 𝑥]𝜓)    &   (𝜑 → ¬ [∅ / 𝑥]𝜓)    &   ((𝜑𝑦𝐴𝑧𝑦) → ([𝑧 / 𝑥]𝜓[𝑦 / 𝑥]𝜓))    &   ((𝜑𝑦𝐴𝑧𝐴) → (([𝑦 / 𝑥]𝜓[𝑧 / 𝑥]𝜓) → [(𝑦𝑧) / 𝑥]𝜓))       (𝜑𝐹 ∈ (Fil‘𝐴))
 
Theoremfilfi 22918 A filter is closed under taking intersections. (Contributed by Mario Carneiro, 27-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.)
(𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
 
Theoremfilinn0 22919 The intersection of two elements of a filter can't be empty. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ≠ ∅)
 
Theoremfilintn0 22920 A filter has the finite intersection property. Remark below Definition 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 20-Sep-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ≠ ∅)
 
Theoremfiln0 22921 The empty set is not a filter. Remark below Definition 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 30-Oct-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
(𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
 
Theoreminfil 22922 The intersection of two filters is a filter. Use fiint 9021 to extend this property to the intersection of a finite set of filters. Paragraph 3 of [BourbakiTop1] p. I.36. (Contributed by FL, 17-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝐹𝐺) ∈ (Fil‘𝑋))
 
Theoremsnfil 22923 A singleton is a filter. Example 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 16-Sep-2007.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐴𝐵𝐴 ≠ ∅) → {𝐴} ∈ (Fil‘𝐴))
 
Theoremfbasweak 22924 A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝐹 ∈ (fBas‘𝑌))
 
Theoremsnfbas 22925 Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐵𝑉) → {𝐴} ∈ (fBas‘𝐵))
 
Theoremfsubbas 22926 A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝑋𝑉 → ((fi‘𝐴) ∈ (fBas‘𝑋) ↔ (𝐴 ⊆ 𝒫 𝑋𝐴 ≠ ∅ ∧ ¬ ∅ ∈ (fi‘𝐴))))
 
Theoremfbasfip 22927 A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
 
Theoremfbunfip 22928* A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑌)) → (¬ ∅ ∈ (fi‘(𝐹𝐺)) ↔ ∀𝑥𝐹𝑦𝐺 (𝑥𝑦) ≠ ∅))
 
Theoremfgval 22929* The filter generating class gives a filter for every filter base. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐹 ∩ 𝒫 𝑥) ≠ ∅})
 
Theoremelfg 22930* A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑥𝐹 𝑥𝐴)))
 
Theoremssfg 22931 A filter base is a subset of its generated filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (fBas‘𝑋) → 𝐹 ⊆ (𝑋filGen𝐹))
 
Theoremfgss 22932 A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋) ∧ 𝐹𝐺) → (𝑋filGen𝐹) ⊆ (𝑋filGen𝐺))
 
Theoremfgss2 22933* A condition for a filter to be finer than another involving their filter bases. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (fBas‘𝑋) ∧ 𝐺 ∈ (fBas‘𝑋)) → ((𝑋filGen𝐹) ⊆ (𝑋filGen𝐺) ↔ ∀𝑥𝐹𝑦𝐺 𝑦𝑥))
 
Theoremfgfil 22934 A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
 
Theoremelfilss 22935* An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐹 ↔ ∃𝑡𝐹 𝑡𝐴))
 
Theoremfilfinnfr 22936 No filter containing a finite element is free. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → 𝐹 ≠ ∅)
 
Theoremfgcl 22937 A generated filter is a filter. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (fBas‘𝑋) → (𝑋filGen𝐹) ∈ (Fil‘𝑋))
 
Theoremfgabs 22938 Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.)
((𝐹 ∈ (fBas‘𝑌) ∧ 𝑌𝑋) → (𝑋filGen(𝑌filGen𝐹)) = (𝑋filGen𝐹))
 
Theoremneifil 22939 The neighborhoods of a nonempty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → ((nei‘𝐽)‘𝑆) ∈ (Fil‘𝑋))
 
Theoremfilunibas 22940 Recover the base set from a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
 
Theoremfilunirn 22941 Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
 
Theoremfilconn 22942 A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)
 
Theoremfbasrn 22943* Given a filter on a domain, produce a filter on the range. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
𝐶 = ran (𝑥𝐵 ↦ (𝐹𝑥))       ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋𝑌𝑌𝑉) → 𝐶 ∈ (fBas‘𝑌))
 
Theoremfiluni 22944* The union of a nonempty set of filters with a common base and closed under pairwise union is a filter. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓𝐹𝑔𝐹 (𝑓𝑔) ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋))
 
Theoremtrfil1 22945 Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 = (𝐿t 𝐴))
 
Theoremtrfil2 22946* Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣𝐿 (𝑣𝐴) ≠ ∅))
 
Theoremtrfil3 22947 Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by Stefan O'Rear, 2-Aug-2015.)
((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ (𝑌𝐴) ∈ 𝐿))
 
Theoremtrfilss 22948 If 𝐴 is a member of the filter, then the filter truncated to 𝐴 is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐹t 𝐴) ⊆ 𝐹)
 
Theoremfgtr 22949 If 𝐴 is a member of the filter, then truncating 𝐹 to 𝐴 and regenerating the behavior outside 𝐴 using filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝑋filGen(𝐹t 𝐴)) = 𝐹)
 
Theoremtrfg 22950 The trace operation and the filGen operation are inverses to one another in some sense, with filGen growing the base set and t shrinking it. See fgtr 22949 for the converse cancellation law. (Contributed by Mario Carneiro, 15-Oct-2015.)
((𝐹 ∈ (Fil‘𝐴) ∧ 𝐴𝑋𝑋𝑉) → ((𝑋filGen𝐹) ↾t 𝐴) = 𝐹)
 
Theoremtrnei 22951 The trace, over a set 𝐴, of the filter of the neighborhoods of a point 𝑃 is a filter iff 𝑃 belongs to the closure of 𝐴. (This is trfil2 22946 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐽 ∈ (TopOn‘𝑌) ∧ 𝐴𝑌𝑃𝑌) → (𝑃 ∈ ((cls‘𝐽)‘𝐴) ↔ (((nei‘𝐽)‘{𝑃}) ↾t 𝐴) ∈ (Fil‘𝐴)))
 
Theoremcfinfil 22952* Relative complements of the finite parts of an infinite set is a filter. When 𝐴 = ℕ the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝑋𝑉𝐴𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥) ∈ Fin} ∈ (Fil‘𝑋))
 
Theoremcsdfil 22953* The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝑋 ∈ dom card ∧ ω ≼ 𝑋) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ≺ 𝑋} ∈ (Fil‘𝑋))
 
Theoremsupfil 22954* The supersets of a nonempty set which are also subsets of a given base set form a filter. (Contributed by Jeff Hankins, 12-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
((𝐴𝑉𝐵𝐴𝐵 ≠ ∅) → {𝑥 ∈ 𝒫 𝐴𝐵𝑥} ∈ (Fil‘𝐴))
 
Theoremzfbas 22955 The set of upper sets of integers is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
ran ℤ ∈ (fBas‘ℤ)
 
Theoremuzrest 22956 The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))
 
Theoremuzfbas 22957 The set of upper sets of integers based at a point in a fixed upper integer set like is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
𝑍 = (ℤ𝑀)       (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
 
12.2.3  Ultrafilters
 
Syntaxcufil 22958 Extend class notation with the ultrafilters-on-a-set function.
class UFil
 
Syntaxcufl 22959 Extend class notation with the ultrafilter lemma.
class UFL
 
Definitiondf-ufil 22960* Define the set of ultrafilters on a set. An ultrafilter is a filter that gives a definite result for every subset. (Contributed by Jeff Hankins, 30-Nov-2009.)
UFil = (𝑔 ∈ V ↦ {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥𝑓 ∨ (𝑔𝑥) ∈ 𝑓)})
 
Definitiondf-ufl 22961* Define the class of base sets for which the ultrafilter lemma filssufil 22971 holds. (Contributed by Mario Carneiro, 26-Aug-2015.)
UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔}
 
Theoremisufil 22962* The property of being an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
(𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
 
Theoremufilfil 22963 An ultrafilter is a filter. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
(𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
 
Theoremufilss 22964 For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐹 ∨ (𝑋𝑆) ∈ 𝐹))
 
Theoremufilb 22965 The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013.) (Revised by Mario Carneiro, 29-Jul-2015.)
((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝑋) → (¬ 𝑆𝐹 ↔ (𝑋𝑆) ∈ 𝐹))
 
Theoremufilmax 22966 Any filter finer than an ultrafilter is actually equal to it. (Contributed by Jeff Hankins, 1-Dec-2009.) (Revised by Mario Carneiro, 29-Jul-2015.)
((𝐹 ∈ (UFil‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → 𝐹 = 𝐺)
 
Theoremisufil2 22967* The maximal property of an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
 
Theoremufprim 22968 An ultrafilter is a prime filter. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Mario Carneiro, 2-Aug-2015.)
((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐹𝐵𝐹) ↔ (𝐴𝐵) ∈ 𝐹))
 
Theoremtrufil 22969 Conditions for the trace of an ultrafilter 𝐿 to be an ultrafilter. (Contributed by Mario Carneiro, 27-Aug-2015.)
((𝐿 ∈ (UFil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (UFil‘𝐴) ↔ 𝐴𝐿))
 
Theoremfilssufilg 22970* A filter is contained in some ultrafilter. This version of filssufil 22971 contains the choice as a hypothesis (in the assumption that 𝒫 𝒫 𝑋 is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
 
Theoremfilssufil 22971* A filter is contained in some ultrafilter. (Requires the Axiom of Choice, via numth3 10157.) (Contributed by Jeff Hankins, 2-Dec-2009.) (Revised by Stefan O'Rear, 29-Jul-2015.)
(𝐹 ∈ (Fil‘𝑋) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
 
Theoremisufl 22972* Define the (strong) ultrafilter lemma, parameterized over base sets. A set 𝑋 satisfies the ultrafilter lemma if every filter on 𝑋 is a subset of some ultrafilter. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑋𝑉 → (𝑋 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑋)∃𝑔 ∈ (UFil‘𝑋)𝑓𝑔))
 
Theoremufli 22973* Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
((𝑋 ∈ UFL ∧ 𝐹 ∈ (Fil‘𝑋)) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
 
Theoremnumufl 22974 Consequence of filssufilg 22970: a set whose double powerset is well-orderable satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL)
 
Theoremfiufl 22975 A finite set satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑋 ∈ Fin → 𝑋 ∈ UFL)
 
Theoremacufl 22976 The axiom of choice implies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.)
(CHOICE → UFL = V)
 
Theoremssufl 22977 If 𝑌 is a subset of 𝑋 and filters extend to ultrafilters in 𝑋, then they still do in 𝑌. (Contributed by Mario Carneiro, 26-Aug-2015.)
((𝑋 ∈ UFL ∧ 𝑌𝑋) → 𝑌 ∈ UFL)
 
Theoremufileu 22978* If the ultrafilter containing a given filter is unique, the filter is an ultrafilter. (Contributed by Jeff Hankins, 3-Dec-2009.) (Revised by Mario Carneiro, 2-Oct-2015.)
(𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (UFil‘𝑋) ↔ ∃!𝑓 ∈ (UFil‘𝑋)𝐹𝑓))
 
Theoremfilufint 22979* A filter is equal to the intersection of the ultrafilters containing it. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (Fil‘𝑋) → {𝑓 ∈ (UFil‘𝑋) ∣ 𝐹𝑓} = 𝐹)
 
Theoremuffix 22980* Lemma for fixufil 22981 and uffixfr 22982. (Contributed by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝑋𝑉𝐴𝑋) → ({{𝐴}} ∈ (fBas‘𝑋) ∧ {𝑥 ∈ 𝒫 𝑋𝐴𝑥} = (𝑋filGen{{𝐴}})))
 
Theoremfixufil 22981* The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009.) (Revised by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 29-Jul-2015.)
((𝑋𝑉𝐴𝑋) → {𝑥 ∈ 𝒫 𝑋𝐴𝑥} ∈ (UFil‘𝑋))
 
Theoremuffixfr 22982* An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element 𝐴), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
 
Theoremuffix2 22983* A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
 
Theoremuffixsn 22984 The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)
 
Theoremufildom1 22985 An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (UFil‘𝑋) → 𝐹 ≼ 1o)
 
Theoremuffinfix 22986* An ultrafilter containing a finite element is fixed. (Contributed by Jeff Hankins, 5-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
((𝐹 ∈ (UFil‘𝑋) ∧ 𝑆𝐹𝑆 ∈ Fin) → ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})
 
Theoremcfinufil 22987* An ultrafilter is free iff it contains the Fréchet filter cfinfil 22952 as a subset. (Contributed by NM, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
(𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹))
 
Theoremufinffr 22988* An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Mario Carneiro, 4-Dec-2013.)
((𝑋𝐵𝐴𝑋 ∧ ω ≼ 𝐴) → ∃𝑓 ∈ (UFil‘𝑋)(𝐴𝑓 𝑓 = ∅))
 
Theoremufilen 22989* Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
(ω ≼ 𝑋 → ∃𝑓 ∈ (UFil‘𝑋)∀𝑥𝑓 𝑥𝑋)
 
Theoremufildr 22990 An ultrafilter gives rise to a connected door topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
𝐽 = (𝐹 ∪ {∅})       (𝐹 ∈ (UFil‘𝑋) → (𝐽 ∪ (Clsd‘𝐽)) = 𝒫 𝑋)
 
Theoremfin1aufil 22991 There are no definable free ultrafilters in ZFC. However, there are free ultrafilters in some choice-denying constructions. Here we show that given an amorphous set (a.k.a. a Ia-finite I-infinite set) 𝑋, the set of infinite subsets of 𝑋 is a free ultrafilter on 𝑋. (Contributed by Mario Carneiro, 20-May-2015.)
𝐹 = (𝒫 𝑋 ∖ Fin)       (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = ∅))
 
12.2.4  Filter limits
 
Syntaxcfm 22992 Extend class definition to include the neighborhood filter mapping function.
class FilMap
 
Syntaxcflim 22993 Extend class notation with a function returning the limit of a filter.
class fLim
 
Syntaxcflf 22994 Extend class definition to include the function for filter-based function limits.
class fLimf
 
Syntaxcfcls 22995 Extend class definition to include the cluster point function on filters.
class fClus
 
Syntaxcfcf 22996 Extend class definition to include the function for cluster points of a function.
class fClusf
 
Definitiondf-fm 22997* Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 20-Jul-2015.)
FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
 
Definitiondf-flim 22998* Define a function (indexed by a topology 𝑗) whose value is the limits of a filter 𝑓. (Contributed by Jeff Hankins, 4-Sep-2009.)
fLim = (𝑗 ∈ Top, 𝑓 ran Fil ↦ {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)})
 
Definitiondf-flf 22999* Define a function that gives the limits of a function 𝑓 in the filter sense. (Contributed by Jeff Hankins, 14-Oct-2009.)
fLimf = (𝑥 ∈ Top, 𝑦 ran Fil ↦ (𝑓 ∈ ( 𝑥m 𝑦) ↦ (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦))))
 
Definitiondf-fcls 23000* Define a function that takes a filter in a topology to its set of cluster points. (Contributed by Jeff Hankins, 10-Nov-2009.)
fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑥𝑓 ((cls‘𝑗)‘𝑥), ∅))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >