![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-cld | Structured version Visualization version GIF version |
Description: Define a function on topologies whose value is the set of closed sets of the topology. (Contributed by NM, 2-Oct-2006.) |
Ref | Expression |
---|---|
df-cld | ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccld 22742 | . 2 class Clsd | |
2 | vj | . . 3 setvar 𝑗 | |
3 | ctop 22617 | . . 3 class Top | |
4 | 2 | cv 1538 | . . . . . . 7 class 𝑗 |
5 | 4 | cuni 4909 | . . . . . 6 class ∪ 𝑗 |
6 | vx | . . . . . . 7 setvar 𝑥 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑥 |
8 | 5, 7 | cdif 3946 | . . . . 5 class (∪ 𝑗 ∖ 𝑥) |
9 | 8, 4 | wcel 2104 | . . . 4 wff (∪ 𝑗 ∖ 𝑥) ∈ 𝑗 |
10 | 5 | cpw 4603 | . . . 4 class 𝒫 ∪ 𝑗 |
11 | 9, 6, 10 | crab 3430 | . . 3 class {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗} |
12 | 2, 3, 11 | cmpt 5232 | . 2 class (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) |
13 | 1, 12 | wceq 1539 | 1 wff Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) |
Colors of variables: wff setvar class |
This definition is referenced by: fncld 22748 cldval 22749 |
Copyright terms: Public domain | W3C validator |