| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-nvc | Structured version Visualization version GIF version | ||
| Description: A normed vector space is a normed module which is also a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-nvc | ⊢ NrmVec = (NrmMod ∩ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvc 24594 | . 2 class NrmVec | |
| 2 | cnlm 24593 | . . 3 class NrmMod | |
| 3 | clvec 21101 | . . 3 class LVec | |
| 4 | 2, 3 | cin 3950 | . 2 class (NrmMod ∩ LVec) |
| 5 | 1, 4 | wceq 1540 | 1 wff NrmVec = (NrmMod ∩ LVec) |
| Colors of variables: wff setvar class |
| This definition is referenced by: isnvc 24716 |
| Copyright terms: Public domain | W3C validator |