Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-nvc | Structured version Visualization version GIF version |
Description: A normed vector space is a normed module which is also a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
df-nvc | ⊢ NrmVec = (NrmMod ∩ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvc 23735 | . 2 class NrmVec | |
2 | cnlm 23734 | . . 3 class NrmMod | |
3 | clvec 20362 | . . 3 class LVec | |
4 | 2, 3 | cin 3891 | . 2 class (NrmMod ∩ LVec) |
5 | 1, 4 | wceq 1542 | 1 wff NrmVec = (NrmMod ∩ LVec) |
Colors of variables: wff setvar class |
This definition is referenced by: isnvc 23857 |
Copyright terms: Public domain | W3C validator |