MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-nlm Structured version   Visualization version   GIF version

Definition df-nlm 24086
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
df-nlm NrmMod = {𝑀 ∈ (NrmGrp ∩ LMod) ∣ [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)))}
Distinct variable group:   𝑀,𝑓,π‘₯,𝑦

Detailed syntax breakdown of Definition df-nlm
StepHypRef Expression
1 cnlm 24080 . 2 class NrmMod
2 vf . . . . . . 7 setvar 𝑓
32cv 1540 . . . . . 6 class 𝑓
4 cnrg 24079 . . . . . 6 class NrmRing
53, 4wcel 2106 . . . . 5 wff 𝑓 ∈ NrmRing
6 vx . . . . . . . . . . 11 setvar π‘₯
76cv 1540 . . . . . . . . . 10 class π‘₯
8 vy . . . . . . . . . . 11 setvar 𝑦
98cv 1540 . . . . . . . . . 10 class 𝑦
10 vw . . . . . . . . . . . 12 setvar 𝑀
1110cv 1540 . . . . . . . . . . 11 class 𝑀
12 cvsca 17197 . . . . . . . . . . 11 class ·𝑠
1311, 12cfv 6540 . . . . . . . . . 10 class ( ·𝑠 β€˜π‘€)
147, 9, 13co 7405 . . . . . . . . 9 class (π‘₯( ·𝑠 β€˜π‘€)𝑦)
15 cnm 24076 . . . . . . . . . 10 class norm
1611, 15cfv 6540 . . . . . . . . 9 class (normβ€˜π‘€)
1714, 16cfv 6540 . . . . . . . 8 class ((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦))
183, 15cfv 6540 . . . . . . . . . 10 class (normβ€˜π‘“)
197, 18cfv 6540 . . . . . . . . 9 class ((normβ€˜π‘“)β€˜π‘₯)
209, 16cfv 6540 . . . . . . . . 9 class ((normβ€˜π‘€)β€˜π‘¦)
21 cmul 11111 . . . . . . . . 9 class Β·
2219, 20, 21co 7405 . . . . . . . 8 class (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦))
2317, 22wceq 1541 . . . . . . 7 wff ((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦))
24 cbs 17140 . . . . . . . 8 class Base
2511, 24cfv 6540 . . . . . . 7 class (Baseβ€˜π‘€)
2623, 8, 25wral 3061 . . . . . 6 wff βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦))
273, 24cfv 6540 . . . . . 6 class (Baseβ€˜π‘“)
2826, 6, 27wral 3061 . . . . 5 wff βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦))
295, 28wa 396 . . . 4 wff (𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)))
30 csca 17196 . . . . 5 class Scalar
3111, 30cfv 6540 . . . 4 class (Scalarβ€˜π‘€)
3229, 2, 31wsbc 3776 . . 3 wff [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)))
33 cngp 24077 . . . 4 class NrmGrp
34 clmod 20463 . . . 4 class LMod
3533, 34cin 3946 . . 3 class (NrmGrp ∩ LMod)
3632, 10, 35crab 3432 . 2 class {𝑀 ∈ (NrmGrp ∩ LMod) ∣ [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)))}
371, 36wceq 1541 1 wff NrmMod = {𝑀 ∈ (NrmGrp ∩ LMod) ∣ [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ NrmRing ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘“)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)((normβ€˜π‘€)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (((normβ€˜π‘“)β€˜π‘₯) Β· ((normβ€˜π‘€)β€˜π‘¦)))}
Colors of variables: wff setvar class
This definition is referenced by:  isnlm  24183
  Copyright terms: Public domain W3C validator