Detailed syntax breakdown of Definition df-nlm
| Step | Hyp | Ref
| Expression |
| 1 | | cnlm 24593 |
. 2
class
NrmMod |
| 2 | | vf |
. . . . . . 7
setvar 𝑓 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑓 |
| 4 | | cnrg 24592 |
. . . . . 6
class
NrmRing |
| 5 | 3, 4 | wcel 2108 |
. . . . 5
wff 𝑓 ∈ NrmRing |
| 6 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 7 | 6 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 8 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 9 | 8 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 10 | | vw |
. . . . . . . . . . . 12
setvar 𝑤 |
| 11 | 10 | cv 1539 |
. . . . . . . . . . 11
class 𝑤 |
| 12 | | cvsca 17301 |
. . . . . . . . . . 11
class
·𝑠 |
| 13 | 11, 12 | cfv 6561 |
. . . . . . . . . 10
class (
·𝑠 ‘𝑤) |
| 14 | 7, 9, 13 | co 7431 |
. . . . . . . . 9
class (𝑥(
·𝑠 ‘𝑤)𝑦) |
| 15 | | cnm 24589 |
. . . . . . . . . 10
class
norm |
| 16 | 11, 15 | cfv 6561 |
. . . . . . . . 9
class
(norm‘𝑤) |
| 17 | 14, 16 | cfv 6561 |
. . . . . . . 8
class
((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) |
| 18 | 3, 15 | cfv 6561 |
. . . . . . . . . 10
class
(norm‘𝑓) |
| 19 | 7, 18 | cfv 6561 |
. . . . . . . . 9
class
((norm‘𝑓)‘𝑥) |
| 20 | 9, 16 | cfv 6561 |
. . . . . . . . 9
class
((norm‘𝑤)‘𝑦) |
| 21 | | cmul 11160 |
. . . . . . . . 9
class
· |
| 22 | 19, 20, 21 | co 7431 |
. . . . . . . 8
class
(((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) |
| 23 | 17, 22 | wceq 1540 |
. . . . . . 7
wff
((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) |
| 24 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 25 | 11, 24 | cfv 6561 |
. . . . . . 7
class
(Base‘𝑤) |
| 26 | 23, 8, 25 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
(Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) |
| 27 | 3, 24 | cfv 6561 |
. . . . . 6
class
(Base‘𝑓) |
| 28 | 26, 6, 27 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
(Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) |
| 29 | 5, 28 | wa 395 |
. . . 4
wff (𝑓 ∈ NrmRing ∧
∀𝑥 ∈
(Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) |
| 30 | | csca 17300 |
. . . . 5
class
Scalar |
| 31 | 11, 30 | cfv 6561 |
. . . 4
class
(Scalar‘𝑤) |
| 32 | 29, 2, 31 | wsbc 3788 |
. . 3
wff
[(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) |
| 33 | | cngp 24590 |
. . . 4
class
NrmGrp |
| 34 | | clmod 20858 |
. . . 4
class
LMod |
| 35 | 33, 34 | cin 3950 |
. . 3
class (NrmGrp
∩ LMod) |
| 36 | 32, 10, 35 | crab 3436 |
. 2
class {𝑤 ∈ (NrmGrp ∩ LMod)
∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))} |
| 37 | 1, 36 | wceq 1540 |
1
wff NrmMod =
{𝑤 ∈ (NrmGrp ∩
LMod) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))} |