MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvc Structured version   Visualization version   GIF version

Theorem isnvc 24611
Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
isnvc (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))

Proof of Theorem isnvc
StepHypRef Expression
1 df-nvc 24503 . 2 NrmVec = (NrmMod ∩ LVec)
21elin2 4153 1 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  LVecclvec 21037  NrmModcnlm 24496  NrmVeccnvc 24497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3909  df-nvc 24503
This theorem is referenced by:  nvcnlm  24612  nvclvec  24613  isnvc2  24615  rlmnvc  24619  isncvsngp  25077  cphnvc  25104
  Copyright terms: Public domain W3C validator