MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvc Structured version   Visualization version   GIF version

Theorem isnvc 24634
Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
isnvc (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))

Proof of Theorem isnvc
StepHypRef Expression
1 df-nvc 24526 . 2 NrmVec = (NrmMod ∩ LVec)
21elin2 4178 1 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  LVecclvec 21060  NrmModcnlm 24519  NrmVeccnvc 24520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-in 3933  df-nvc 24526
This theorem is referenced by:  nvcnlm  24635  nvclvec  24636  isnvc2  24638  rlmnvc  24642  isncvsngp  25101  cphnvc  25128
  Copyright terms: Public domain W3C validator