![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnvc | Structured version Visualization version GIF version |
Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnvc | ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nvc 24621 | . 2 ⊢ NrmVec = (NrmMod ∩ LVec) | |
2 | 1 | elin2 4226 | 1 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 LVecclvec 21124 NrmModcnlm 24614 NrmVeccnvc 24615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-nvc 24621 |
This theorem is referenced by: nvcnlm 24738 nvclvec 24739 isnvc2 24741 rlmnvc 24745 isncvsngp 25202 cphnvc 25229 |
Copyright terms: Public domain | W3C validator |