| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnvc | Structured version Visualization version GIF version | ||
| Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| isnvc | ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nvc 24600 | . 2 ⊢ NrmVec = (NrmMod ∩ LVec) | |
| 2 | 1 | elin2 4203 | 1 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 LVecclvec 21101 NrmModcnlm 24593 NrmVeccnvc 24594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-in 3958 df-nvc 24600 |
| This theorem is referenced by: nvcnlm 24717 nvclvec 24718 isnvc2 24720 rlmnvc 24724 isncvsngp 25183 cphnvc 25210 |
| Copyright terms: Public domain | W3C validator |