MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvc Structured version   Visualization version   GIF version

Theorem isnvc 24590
Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
isnvc (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))

Proof of Theorem isnvc
StepHypRef Expression
1 df-nvc 24482 . 2 NrmVec = (NrmMod ∩ LVec)
21elin2 4169 1 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  LVecclvec 21016  NrmModcnlm 24475  NrmVeccnvc 24476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3924  df-nvc 24482
This theorem is referenced by:  nvcnlm  24591  nvclvec  24592  isnvc2  24594  rlmnvc  24598  isncvsngp  25056  cphnvc  25083
  Copyright terms: Public domain W3C validator