Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnvc | Structured version Visualization version GIF version |
Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnvc | ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nvc 23826 | . 2 ⊢ NrmVec = (NrmMod ∩ LVec) | |
2 | 1 | elin2 4142 | 1 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2105 LVecclvec 20447 NrmModcnlm 23819 NrmVeccnvc 23820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3904 df-nvc 23826 |
This theorem is referenced by: nvcnlm 23943 nvclvec 23944 isnvc2 23946 rlmnvc 23950 isncvsngp 24396 cphnvc 24423 |
Copyright terms: Public domain | W3C validator |