MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvc Structured version   Visualization version   GIF version

Theorem isnvc 23765
Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
isnvc (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))

Proof of Theorem isnvc
StepHypRef Expression
1 df-nvc 23649 . 2 NrmVec = (NrmMod ∩ LVec)
21elin2 4127 1 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  LVecclvec 20279  NrmModcnlm 23642  NrmVeccnvc 23643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-nvc 23649
This theorem is referenced by:  nvcnlm  23766  nvclvec  23767  isnvc2  23769  rlmnvc  23773  isncvsngp  24218  cphnvc  24245
  Copyright terms: Public domain W3C validator