![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnvc | Structured version Visualization version GIF version |
Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
isnvc | ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nvc 24095 | . 2 ⊢ NrmVec = (NrmMod ∩ LVec) | |
2 | 1 | elin2 4197 | 1 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 LVecclvec 20712 NrmModcnlm 24088 NrmVeccnvc 24089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-nvc 24095 |
This theorem is referenced by: nvcnlm 24212 nvclvec 24213 isnvc2 24215 rlmnvc 24219 isncvsngp 24665 cphnvc 24692 |
Copyright terms: Public domain | W3C validator |