| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnvc | Structured version Visualization version GIF version | ||
| Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| isnvc | ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nvc 24503 | . 2 ⊢ NrmVec = (NrmMod ∩ LVec) | |
| 2 | 1 | elin2 4153 | 1 ⊢ (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 LVecclvec 21037 NrmModcnlm 24496 NrmVeccnvc 24497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-nvc 24503 |
| This theorem is referenced by: nvcnlm 24612 nvclvec 24613 isnvc2 24615 rlmnvc 24619 isncvsngp 25077 cphnvc 25104 |
| Copyright terms: Public domain | W3C validator |