MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-o1 Structured version   Visualization version   GIF version

Definition df-o1 15463
Description: Define the set of eventually bounded functions. We don't bother to build the full conception of big-O notation, because we can represent any big-O in terms of 𝑂(1) and division, and any little-O in terms of a limit and division. We could also use limsup for this, but it only works on integer sequences, while this will work for real sequences or integer sequences. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
df-o1 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Distinct variable group:   𝑥,𝑦,𝑓,𝑚

Detailed syntax breakdown of Definition df-o1
StepHypRef Expression
1 co1 15459 . 2 class 𝑂(1)
2 vy . . . . . . . . . 10 setvar 𝑦
32cv 1539 . . . . . . . . 9 class 𝑦
4 vf . . . . . . . . . 10 setvar 𝑓
54cv 1539 . . . . . . . . 9 class 𝑓
63, 5cfv 6514 . . . . . . . 8 class (𝑓𝑦)
7 cabs 15207 . . . . . . . 8 class abs
86, 7cfv 6514 . . . . . . 7 class (abs‘(𝑓𝑦))
9 vm . . . . . . . 8 setvar 𝑚
109cv 1539 . . . . . . 7 class 𝑚
11 cle 11216 . . . . . . 7 class
128, 10, 11wbr 5110 . . . . . 6 wff (abs‘(𝑓𝑦)) ≤ 𝑚
135cdm 5641 . . . . . . 7 class dom 𝑓
14 vx . . . . . . . . 9 setvar 𝑥
1514cv 1539 . . . . . . . 8 class 𝑥
16 cpnf 11212 . . . . . . . 8 class +∞
17 cico 13315 . . . . . . . 8 class [,)
1815, 16, 17co 7390 . . . . . . 7 class (𝑥[,)+∞)
1913, 18cin 3916 . . . . . 6 class (dom 𝑓 ∩ (𝑥[,)+∞))
2012, 2, 19wral 3045 . . . . 5 wff 𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
21 cr 11074 . . . . 5 class
2220, 9, 21wrex 3054 . . . 4 wff 𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
2322, 14, 21wrex 3054 . . 3 wff 𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
24 cc 11073 . . . 4 class
25 cpm 8803 . . . 4 class pm
2624, 21, 25co 7390 . . 3 class (ℂ ↑pm ℝ)
2723, 4, 26crab 3408 . 2 class {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
281, 27wceq 1540 1 wff 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Colors of variables: wff setvar class
This definition is referenced by:  elo1  15499
  Copyright terms: Public domain W3C validator