MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-o1 Structured version   Visualization version   GIF version

Definition df-o1 15522
Description: Define the set of eventually bounded functions. We don't bother to build the full conception of big-O notation, because we can represent any big-O in terms of 𝑂(1) and division, and any little-O in terms of a limit and division. We could also use limsup for this, but it only works on integer sequences, while this will work for real sequences or integer sequences. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
df-o1 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Distinct variable group:   𝑥,𝑦,𝑓,𝑚

Detailed syntax breakdown of Definition df-o1
StepHypRef Expression
1 co1 15518 . 2 class 𝑂(1)
2 vy . . . . . . . . . 10 setvar 𝑦
32cv 1535 . . . . . . . . 9 class 𝑦
4 vf . . . . . . . . . 10 setvar 𝑓
54cv 1535 . . . . . . . . 9 class 𝑓
63, 5cfv 6562 . . . . . . . 8 class (𝑓𝑦)
7 cabs 15269 . . . . . . . 8 class abs
86, 7cfv 6562 . . . . . . 7 class (abs‘(𝑓𝑦))
9 vm . . . . . . . 8 setvar 𝑚
109cv 1535 . . . . . . 7 class 𝑚
11 cle 11293 . . . . . . 7 class
128, 10, 11wbr 5147 . . . . . 6 wff (abs‘(𝑓𝑦)) ≤ 𝑚
135cdm 5688 . . . . . . 7 class dom 𝑓
14 vx . . . . . . . . 9 setvar 𝑥
1514cv 1535 . . . . . . . 8 class 𝑥
16 cpnf 11289 . . . . . . . 8 class +∞
17 cico 13385 . . . . . . . 8 class [,)
1815, 16, 17co 7430 . . . . . . 7 class (𝑥[,)+∞)
1913, 18cin 3961 . . . . . 6 class (dom 𝑓 ∩ (𝑥[,)+∞))
2012, 2, 19wral 3058 . . . . 5 wff 𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
21 cr 11151 . . . . 5 class
2220, 9, 21wrex 3067 . . . 4 wff 𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
2322, 14, 21wrex 3067 . . 3 wff 𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
24 cc 11150 . . . 4 class
25 cpm 8865 . . . 4 class pm
2624, 21, 25co 7430 . . 3 class (ℂ ↑pm ℝ)
2723, 4, 26crab 3432 . 2 class {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
281, 27wceq 1536 1 wff 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Colors of variables: wff setvar class
This definition is referenced by:  elo1  15558
  Copyright terms: Public domain W3C validator