MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-o1 Structured version   Visualization version   GIF version

Definition df-o1 15536
Description: Define the set of eventually bounded functions. We don't bother to build the full conception of big-O notation, because we can represent any big-O in terms of 𝑂(1) and division, and any little-O in terms of a limit and division. We could also use limsup for this, but it only works on integer sequences, while this will work for real sequences or integer sequences. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
df-o1 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Distinct variable group:   𝑥,𝑦,𝑓,𝑚

Detailed syntax breakdown of Definition df-o1
StepHypRef Expression
1 co1 15532 . 2 class 𝑂(1)
2 vy . . . . . . . . . 10 setvar 𝑦
32cv 1536 . . . . . . . . 9 class 𝑦
4 vf . . . . . . . . . 10 setvar 𝑓
54cv 1536 . . . . . . . . 9 class 𝑓
63, 5cfv 6573 . . . . . . . 8 class (𝑓𝑦)
7 cabs 15283 . . . . . . . 8 class abs
86, 7cfv 6573 . . . . . . 7 class (abs‘(𝑓𝑦))
9 vm . . . . . . . 8 setvar 𝑚
109cv 1536 . . . . . . 7 class 𝑚
11 cle 11325 . . . . . . 7 class
128, 10, 11wbr 5166 . . . . . 6 wff (abs‘(𝑓𝑦)) ≤ 𝑚
135cdm 5700 . . . . . . 7 class dom 𝑓
14 vx . . . . . . . . 9 setvar 𝑥
1514cv 1536 . . . . . . . 8 class 𝑥
16 cpnf 11321 . . . . . . . 8 class +∞
17 cico 13409 . . . . . . . 8 class [,)
1815, 16, 17co 7448 . . . . . . 7 class (𝑥[,)+∞)
1913, 18cin 3975 . . . . . 6 class (dom 𝑓 ∩ (𝑥[,)+∞))
2012, 2, 19wral 3067 . . . . 5 wff 𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
21 cr 11183 . . . . 5 class
2220, 9, 21wrex 3076 . . . 4 wff 𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
2322, 14, 21wrex 3076 . . 3 wff 𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
24 cc 11182 . . . 4 class
25 cpm 8885 . . . 4 class pm
2624, 21, 25co 7448 . . 3 class (ℂ ↑pm ℝ)
2723, 4, 26crab 3443 . 2 class {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
281, 27wceq 1537 1 wff 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Colors of variables: wff setvar class
This definition is referenced by:  elo1  15572
  Copyright terms: Public domain W3C validator