MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-o1 Structured version   Visualization version   GIF version

Definition df-o1 15127
Description: Define the set of eventually bounded functions. We don't bother to build the full conception of big-O notation, because we can represent any big-O in terms of 𝑂(1) and division, and any little-O in terms of a limit and division. We could also use limsup for this, but it only works on integer sequences, while this will work for real sequences or integer sequences. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
df-o1 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Distinct variable group:   𝑥,𝑦,𝑓,𝑚

Detailed syntax breakdown of Definition df-o1
StepHypRef Expression
1 co1 15123 . 2 class 𝑂(1)
2 vy . . . . . . . . . 10 setvar 𝑦
32cv 1538 . . . . . . . . 9 class 𝑦
4 vf . . . . . . . . . 10 setvar 𝑓
54cv 1538 . . . . . . . . 9 class 𝑓
63, 5cfv 6418 . . . . . . . 8 class (𝑓𝑦)
7 cabs 14873 . . . . . . . 8 class abs
86, 7cfv 6418 . . . . . . 7 class (abs‘(𝑓𝑦))
9 vm . . . . . . . 8 setvar 𝑚
109cv 1538 . . . . . . 7 class 𝑚
11 cle 10941 . . . . . . 7 class
128, 10, 11wbr 5070 . . . . . 6 wff (abs‘(𝑓𝑦)) ≤ 𝑚
135cdm 5580 . . . . . . 7 class dom 𝑓
14 vx . . . . . . . . 9 setvar 𝑥
1514cv 1538 . . . . . . . 8 class 𝑥
16 cpnf 10937 . . . . . . . 8 class +∞
17 cico 13010 . . . . . . . 8 class [,)
1815, 16, 17co 7255 . . . . . . 7 class (𝑥[,)+∞)
1913, 18cin 3882 . . . . . 6 class (dom 𝑓 ∩ (𝑥[,)+∞))
2012, 2, 19wral 3063 . . . . 5 wff 𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
21 cr 10801 . . . . 5 class
2220, 9, 21wrex 3064 . . . 4 wff 𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
2322, 14, 21wrex 3064 . . 3 wff 𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
24 cc 10800 . . . 4 class
25 cpm 8574 . . . 4 class pm
2624, 21, 25co 7255 . . 3 class (ℂ ↑pm ℝ)
2723, 4, 26crab 3067 . 2 class {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
281, 27wceq 1539 1 wff 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Colors of variables: wff setvar class
This definition is referenced by:  elo1  15163
  Copyright terms: Public domain W3C validator