MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-o1 Structured version   Visualization version   GIF version

Definition df-o1 15440
Description: Define the set of eventually bounded functions. We don't bother to build the full conception of big-O notation, because we can represent any big-O in terms of 𝑂(1) and division, and any little-O in terms of a limit and division. We could also use limsup for this, but it only works on integer sequences, while this will work for real sequences or integer sequences. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
df-o1 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Distinct variable group:   𝑥,𝑦,𝑓,𝑚

Detailed syntax breakdown of Definition df-o1
StepHypRef Expression
1 co1 15436 . 2 class 𝑂(1)
2 vy . . . . . . . . . 10 setvar 𝑦
32cv 1538 . . . . . . . . 9 class 𝑦
4 vf . . . . . . . . . 10 setvar 𝑓
54cv 1538 . . . . . . . . 9 class 𝑓
63, 5cfv 6544 . . . . . . . 8 class (𝑓𝑦)
7 cabs 15187 . . . . . . . 8 class abs
86, 7cfv 6544 . . . . . . 7 class (abs‘(𝑓𝑦))
9 vm . . . . . . . 8 setvar 𝑚
109cv 1538 . . . . . . 7 class 𝑚
11 cle 11255 . . . . . . 7 class
128, 10, 11wbr 5149 . . . . . 6 wff (abs‘(𝑓𝑦)) ≤ 𝑚
135cdm 5677 . . . . . . 7 class dom 𝑓
14 vx . . . . . . . . 9 setvar 𝑥
1514cv 1538 . . . . . . . 8 class 𝑥
16 cpnf 11251 . . . . . . . 8 class +∞
17 cico 13332 . . . . . . . 8 class [,)
1815, 16, 17co 7413 . . . . . . 7 class (𝑥[,)+∞)
1913, 18cin 3948 . . . . . 6 class (dom 𝑓 ∩ (𝑥[,)+∞))
2012, 2, 19wral 3059 . . . . 5 wff 𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
21 cr 11113 . . . . 5 class
2220, 9, 21wrex 3068 . . . 4 wff 𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
2322, 14, 21wrex 3068 . . 3 wff 𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚
24 cc 11112 . . . 4 class
25 cpm 8825 . . . 4 class pm
2624, 21, 25co 7413 . . 3 class (ℂ ↑pm ℝ)
2723, 4, 26crab 3430 . 2 class {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
281, 27wceq 1539 1 wff 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
Colors of variables: wff setvar class
This definition is referenced by:  elo1  15476
  Copyright terms: Public domain W3C validator