![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elo1 | Structured version Visualization version GIF version |
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
elo1 | ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5903 | . . . . 5 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
2 | 1 | ineq1d 4211 | . . . 4 ⊢ (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞))) |
3 | fveq1 6890 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
4 | 3 | fveq2d 6895 | . . . . 5 ⊢ (𝑓 = 𝐹 → (abs‘(𝑓‘𝑦)) = (abs‘(𝐹‘𝑦))) |
5 | 4 | breq1d 5158 | . . . 4 ⊢ (𝑓 = 𝐹 → ((abs‘(𝑓‘𝑦)) ≤ 𝑚 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
6 | 2, 5 | raleqbidv 3342 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓‘𝑦)) ≤ 𝑚 ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
7 | 6 | 2rexbidv 3219 | . 2 ⊢ (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓‘𝑦)) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
8 | df-o1 15433 | . 2 ⊢ 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓‘𝑦)) ≤ 𝑚} | |
9 | 7, 8 | elrab2 3686 | 1 ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ∩ cin 3947 class class class wbr 5148 dom cdm 5676 ‘cfv 6543 (class class class)co 7408 ↑pm cpm 8820 ℂcc 11107 ℝcr 11108 +∞cpnf 11244 ≤ cle 11248 [,)cico 13325 abscabs 15180 𝑂(1)co1 15429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-dm 5686 df-iota 6495 df-fv 6551 df-o1 15433 |
This theorem is referenced by: elo12 15470 o1f 15472 o1dm 15473 |
Copyright terms: Public domain | W3C validator |