| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elo1 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| elo1 | ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5883 | . . . . 5 ⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) | |
| 2 | 1 | ineq1d 4194 | . . . 4 ⊢ (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞))) |
| 3 | fveq1 6875 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 4 | 3 | fveq2d 6880 | . . . . 5 ⊢ (𝑓 = 𝐹 → (abs‘(𝑓‘𝑦)) = (abs‘(𝐹‘𝑦))) |
| 5 | 4 | breq1d 5129 | . . . 4 ⊢ (𝑓 = 𝐹 → ((abs‘(𝑓‘𝑦)) ≤ 𝑚 ↔ (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| 6 | 2, 5 | raleqbidv 3325 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓‘𝑦)) ≤ 𝑚 ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| 7 | 6 | 2rexbidv 3206 | . 2 ⊢ (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓‘𝑦)) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| 8 | df-o1 15506 | . 2 ⊢ 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓‘𝑦)) ≤ 𝑚} | |
| 9 | 7, 8 | elrab2 3674 | 1 ⊢ (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ∩ cin 3925 class class class wbr 5119 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ↑pm cpm 8841 ℂcc 11127 ℝcr 11128 +∞cpnf 11266 ≤ cle 11270 [,)cico 13364 abscabs 15253 𝑂(1)co1 15502 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 df-iota 6484 df-fv 6539 df-o1 15506 |
| This theorem is referenced by: elo12 15543 o1f 15545 o1dm 15546 |
| Copyright terms: Public domain | W3C validator |