MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo1 Structured version   Visualization version   GIF version

Theorem elo1 15499
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo1 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
Distinct variable group:   𝑥,𝑚,𝑦,𝐹

Proof of Theorem elo1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5870 . . . . 5 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
21ineq1d 4185 . . . 4 (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞)))
3 fveq1 6860 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
43fveq2d 6865 . . . . 5 (𝑓 = 𝐹 → (abs‘(𝑓𝑦)) = (abs‘(𝐹𝑦)))
54breq1d 5120 . . . 4 (𝑓 = 𝐹 → ((abs‘(𝑓𝑦)) ≤ 𝑚 ↔ (abs‘(𝐹𝑦)) ≤ 𝑚))
62, 5raleqbidv 3321 . . 3 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚 ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
762rexbidv 3203 . 2 (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
8 df-o1 15463 . 2 𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
97, 8elrab2 3665 1 (𝐹 ∈ 𝑂(1) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(abs‘(𝐹𝑦)) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cin 3916   class class class wbr 5110  dom cdm 5641  cfv 6514  (class class class)co 7390  pm cpm 8803  cc 11073  cr 11074  +∞cpnf 11212  cle 11216  [,)cico 13315  abscabs 15207  𝑂(1)co1 15459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-dm 5651  df-iota 6467  df-fv 6522  df-o1 15463
This theorem is referenced by:  elo12  15500  o1f  15502  o1dm  15503
  Copyright terms: Public domain W3C validator