Detailed syntax breakdown of Definition df-rlim
Step | Hyp | Ref
| Expression |
1 | | crli 15122 |
. 2
class
⇝𝑟 |
2 | | vf |
. . . . . . 7
setvar 𝑓 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑓 |
4 | | cc 10800 |
. . . . . . 7
class
ℂ |
5 | | cr 10801 |
. . . . . . 7
class
ℝ |
6 | | cpm 8574 |
. . . . . . 7
class
↑pm |
7 | 4, 5, 6 | co 7255 |
. . . . . 6
class (ℂ
↑pm ℝ) |
8 | 3, 7 | wcel 2108 |
. . . . 5
wff 𝑓 ∈ (ℂ
↑pm ℝ) |
9 | | vx |
. . . . . . 7
setvar 𝑥 |
10 | 9 | cv 1538 |
. . . . . 6
class 𝑥 |
11 | 10, 4 | wcel 2108 |
. . . . 5
wff 𝑥 ∈ ℂ |
12 | 8, 11 | wa 395 |
. . . 4
wff (𝑓 ∈ (ℂ
↑pm ℝ) ∧ 𝑥 ∈ ℂ) |
13 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
14 | 13 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
15 | | vw |
. . . . . . . . . 10
setvar 𝑤 |
16 | 15 | cv 1538 |
. . . . . . . . 9
class 𝑤 |
17 | | cle 10941 |
. . . . . . . . 9
class
≤ |
18 | 14, 16, 17 | wbr 5070 |
. . . . . . . 8
wff 𝑧 ≤ 𝑤 |
19 | 16, 3 | cfv 6418 |
. . . . . . . . . . 11
class (𝑓‘𝑤) |
20 | | cmin 11135 |
. . . . . . . . . . 11
class
− |
21 | 19, 10, 20 | co 7255 |
. . . . . . . . . 10
class ((𝑓‘𝑤) − 𝑥) |
22 | | cabs 14873 |
. . . . . . . . . 10
class
abs |
23 | 21, 22 | cfv 6418 |
. . . . . . . . 9
class
(abs‘((𝑓‘𝑤) − 𝑥)) |
24 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
25 | 24 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
26 | | clt 10940 |
. . . . . . . . 9
class
< |
27 | 23, 25, 26 | wbr 5070 |
. . . . . . . 8
wff
(abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦 |
28 | 18, 27 | wi 4 |
. . . . . . 7
wff (𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦) |
29 | 3 | cdm 5580 |
. . . . . . 7
class dom 𝑓 |
30 | 28, 15, 29 | wral 3063 |
. . . . . 6
wff
∀𝑤 ∈ dom
𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦) |
31 | 30, 13, 5 | wrex 3064 |
. . . . 5
wff
∃𝑧 ∈
ℝ ∀𝑤 ∈
dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦) |
32 | | crp 12659 |
. . . . 5
class
ℝ+ |
33 | 31, 24, 32 | wral 3063 |
. . . 4
wff
∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦) |
34 | 12, 33 | wa 395 |
. . 3
wff ((𝑓 ∈ (ℂ
↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+
∃𝑧 ∈ ℝ
∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦)) |
35 | 34, 2, 9 | copab 5132 |
. 2
class
{〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ
↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+
∃𝑧 ∈ ℝ
∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} |
36 | 1, 35 | wceq 1539 |
1
wff
⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ)
∧ 𝑥 ∈ ℂ)
∧ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} |