Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oadd Structured version   Visualization version   GIF version

 Description: Define the ordinal addition operation. (Contributed by NM, 3-May-1995.)
Assertion
Ref Expression
df-oadd +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-oadd
StepHypRef Expression
1 coa 7900 . 2 class +o
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 con0 6026 . . 3 class On
53cv 1507 . . . 4 class 𝑦
6 vz . . . . . 6 setvar 𝑧
7 cvv 3408 . . . . . 6 class V
86cv 1507 . . . . . . 7 class 𝑧
98csuc 6028 . . . . . 6 class suc 𝑧
106, 7, 9cmpt 5004 . . . . 5 class (𝑧 ∈ V ↦ suc 𝑧)
112cv 1507 . . . . 5 class 𝑥
1210, 11crdg 7847 . . . 4 class rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)
135, 12cfv 6185 . . 3 class (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦)
142, 3, 4, 4, 13cmpo 6976 . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
151, 14wceq 1508 1 wff +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
 Colors of variables: wff setvar class This definition is referenced by:  fnoa  7933  oav  7936
 Copyright terms: Public domain W3C validator