MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-oadd Structured version   Visualization version   GIF version

Definition df-oadd 8138
Description: Define the ordinal addition operation. (Contributed by NM, 3-May-1995.)
Assertion
Ref Expression
df-oadd +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-oadd
StepHypRef Expression
1 coa 8131 . 2 class +o
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 con0 6173 . . 3 class On
53cv 1541 . . . 4 class 𝑦
6 vz . . . . . 6 setvar 𝑧
7 cvv 3399 . . . . . 6 class V
86cv 1541 . . . . . . 7 class 𝑧
98csuc 6175 . . . . . 6 class suc 𝑧
106, 7, 9cmpt 5111 . . . . 5 class (𝑧 ∈ V ↦ suc 𝑧)
112cv 1541 . . . . 5 class 𝑥
1210, 11crdg 8077 . . . 4 class rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)
135, 12cfv 6340 . . 3 class (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦)
142, 3, 4, 4, 13cmpo 7175 . 2 class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
151, 14wceq 1542 1 wff +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
Colors of variables: wff setvar class
This definition is referenced by:  fnoa  8167  oav  8170
  Copyright terms: Public domain W3C validator