| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oav | Structured version Visualization version GIF version | ||
| Description: Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| oav | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 8357 | . . 3 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦) = rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)) | |
| 2 | 1 | fveq1d 6842 | . 2 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦)‘𝑧) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝑧)) |
| 3 | fveq2 6840 | . 2 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝑧) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) | |
| 4 | df-oadd 8415 | . 2 ⊢ +o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦)‘𝑧)) | |
| 5 | fvex 6853 | . 2 ⊢ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵) ∈ V | |
| 6 | 2, 3, 4, 5 | ovmpo 7529 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 Oncon0 6320 suc csuc 6322 ‘cfv 6499 (class class class)co 7369 reccrdg 8354 +o coa 8408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-oadd 8415 |
| This theorem is referenced by: oa0 8457 oasuc 8465 onasuc 8469 oalim 8473 |
| Copyright terms: Public domain | W3C validator |