| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oav | Structured version Visualization version GIF version | ||
| Description: Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| oav | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgeq2 8326 | . . 3 ⊢ (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦) = rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)) | |
| 2 | 1 | fveq1d 6819 | . 2 ⊢ (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦)‘𝑧) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝑧)) |
| 3 | fveq2 6817 | . 2 ⊢ (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝑧) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) | |
| 4 | df-oadd 8384 | . 2 ⊢ +o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦)‘𝑧)) | |
| 5 | fvex 6830 | . 2 ⊢ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵) ∈ V | |
| 6 | 2, 3, 4, 5 | ovmpo 7501 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ↦ cmpt 5170 Oncon0 6302 suc csuc 6304 ‘cfv 6477 (class class class)co 7341 reccrdg 8323 +o coa 8377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-oadd 8384 |
| This theorem is referenced by: oa0 8426 oasuc 8434 onasuc 8438 oalim 8442 |
| Copyright terms: Public domain | W3C validator |