Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oav Structured version   Visualization version   GIF version

Theorem oav 8152
 Description: Value of ordinal addition. (Contributed by NM, 3-May-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oav ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem oav
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgeq2 8064 . . 3 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦) = rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴))
21fveq1d 6665 . 2 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦)‘𝑧) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝑧))
3 fveq2 6663 . 2 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝑧) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
4 df-oadd 8122 . 2 +o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ suc 𝑥), 𝑦)‘𝑧))
5 fvex 6676 . 2 (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵) ∈ V
62, 3, 4, 5ovmpo 7311 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ↦ cmpt 5116  Oncon0 6174  suc csuc 6176  ‘cfv 6340  (class class class)co 7156  reccrdg 8061   +o coa 8115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-iota 6299  df-fun 6342  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-oadd 8122 This theorem is referenced by:  oa0  8157  oasuc  8165  onasuc  8169  oalim  8173
 Copyright terms: Public domain W3C validator