MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnoa Structured version   Visualization version   GIF version

Theorem fnoa 8507
Description: Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnoa +o Fn (On × On)

Proof of Theorem fnoa
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oadd 8469 . 2 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
2 fvex 6904 . 2 (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V
31, 2fnmpoi 8055 1 +o Fn (On × On)
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3474  cmpt 5231   × cxp 5674  Oncon0 6364  suc csuc 6366   Fn wfn 6538  cfv 6543  reccrdg 8408   +o coa 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-oadd 8469
This theorem is referenced by:  cantnfvalf  9659  dmaddpi  10884
  Copyright terms: Public domain W3C validator