Detailed syntax breakdown of Definition df-omul
| Step | Hyp | Ref
| Expression |
| 1 | | comu 8504 |
. 2
class
·o |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | con0 6384 |
. . 3
class
On |
| 5 | 3 | cv 1539 |
. . . 4
class 𝑦 |
| 6 | | vz |
. . . . . 6
setvar 𝑧 |
| 7 | | cvv 3480 |
. . . . . 6
class
V |
| 8 | 6 | cv 1539 |
. . . . . . 7
class 𝑧 |
| 9 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 10 | | coa 8503 |
. . . . . . 7
class
+o |
| 11 | 8, 9, 10 | co 7431 |
. . . . . 6
class (𝑧 +o 𝑥) |
| 12 | 6, 7, 11 | cmpt 5225 |
. . . . 5
class (𝑧 ∈ V ↦ (𝑧 +o 𝑥)) |
| 13 | | c0 4333 |
. . . . 5
class
∅ |
| 14 | 12, 13 | crdg 8449 |
. . . 4
class
rec((𝑧 ∈ V
↦ (𝑧 +o
𝑥)),
∅) |
| 15 | 5, 14 | cfv 6561 |
. . 3
class
(rec((𝑧 ∈ V
↦ (𝑧 +o
𝑥)), ∅)‘𝑦) |
| 16 | 2, 3, 4, 4, 15 | cmpo 7433 |
. 2
class (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦)) |
| 17 | 1, 16 | wceq 1540 |
1
wff
·o = (𝑥
∈ On, 𝑦 ∈ On
↦ (rec((𝑧 ∈ V
↦ (𝑧 +o
𝑥)), ∅)‘𝑦)) |