Home | Metamath
Proof Explorer Theorem List (p. 85 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nnesuc 8401 | Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o suc 𝐵) = ((𝐴 ↑o 𝐵) ·o 𝐴)) | ||
Theorem | nna0r 8402 | Addition to zero. Remark in proof of Theorem 4K(2) of [Enderton] p. 81. Note: In this and later theorems, we deliberately avoid the more general ordinal versions of these theorems (in this case oa0r 8330) so that we can avoid ax-rep 5205, which is not needed for finite recursive definitions. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
⊢ (𝐴 ∈ ω → (∅ +o 𝐴) = 𝐴) | ||
Theorem | nnm0r 8403 | Multiplication with zero. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ (𝐴 ∈ ω → (∅ ·o 𝐴) = ∅) | ||
Theorem | nnacl 8404 | Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω) | ||
Theorem | nnmcl 8405 | Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) | ||
Theorem | nnecl 8406 | Closure of exponentiation of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 24-Mar-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ↑o 𝐵) ∈ ω) | ||
Theorem | nnacli 8407 | ω is closed under addition. Inference form of nnacl 8404. (Contributed by Scott Fenton, 20-Apr-2012.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω ⇒ ⊢ (𝐴 +o 𝐵) ∈ ω | ||
Theorem | nnmcli 8408 | ω is closed under multiplication. Inference form of nnmcl 8405. (Contributed by Scott Fenton, 20-Apr-2012.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω ⇒ ⊢ (𝐴 ·o 𝐵) ∈ ω | ||
Theorem | nnarcl 8409 | Reverse closure law for addition of natural numbers. Exercise 1 of [TakeutiZaring] p. 62 and its converse. (Contributed by NM, 12-Dec-2004.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ ω ↔ (𝐴 ∈ ω ∧ 𝐵 ∈ ω))) | ||
Theorem | nnacom 8410 | Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) | ||
Theorem | nnaordi 8411 | Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | ||
Theorem | nnaord 8412 | Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))) | ||
Theorem | nnaordr 8413 | Ordering property of addition of natural numbers. (Contributed by NM, 9-Nov-2002.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))) | ||
Theorem | nnawordi 8414 | Adding to both sides of an inequality in ω. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶))) | ||
Theorem | nnaass 8415 | Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶))) | ||
Theorem | nndi 8416 | Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ·o (𝐵 +o 𝐶)) = ((𝐴 ·o 𝐵) +o (𝐴 ·o 𝐶))) | ||
Theorem | nnmass 8417 | Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))) | ||
Theorem | nnmsucr 8418 | Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)) | ||
Theorem | nnmcom 8419 | Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) | ||
Theorem | nnaword 8420 | Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ (𝐶 +o 𝐴) ⊆ (𝐶 +o 𝐵))) | ||
Theorem | nnacan 8421 | Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) = (𝐴 +o 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | nnaword1 8422 | Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝐵)) | ||
Theorem | nnaword2 8423 | Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ⊆ (𝐵 +o 𝐴)) | ||
Theorem | nnmordi 8424 | Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | ||
Theorem | nnmord 8425 | Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | ||
Theorem | nnmword 8426 | Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | ||
Theorem | nnmcan 8427 | Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | nnmwordi 8428 | Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) | ||
Theorem | nnmwordri 8429 | Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 ·o 𝐶) ⊆ (𝐵 ·o 𝐶))) | ||
Theorem | nnawordex 8430* | Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵)) | ||
Theorem | nnaordex 8431* | Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | ||
Theorem | 1onn 8432 | One is a natural number. (Contributed by NM, 29-Oct-1995.) |
⊢ 1o ∈ ω | ||
Theorem | 2onn 8433 | The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.) |
⊢ 2o ∈ ω | ||
Theorem | 3onn 8434 | The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 3o ∈ ω | ||
Theorem | 4onn 8435 | The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 4o ∈ ω | ||
Theorem | 1one2o 8436 | Ordinal one is not ordinal two. Analogous to 1ne2 12111. (Contributed by AV, 17-Oct-2023.) |
⊢ 1o ≠ 2o | ||
Theorem | oaabslem 8437 | Lemma for oaabs 8438. (Contributed by NM, 9-Dec-2004.) |
⊢ ((ω ∈ On ∧ 𝐴 ∈ ω) → (𝐴 +o ω) = ω) | ||
Theorem | oaabs 8438 | Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.) |
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ On) ∧ ω ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵) | ||
Theorem | oaabs2 8439 | The absorption law oaabs 8438 is also a property of higher powers of ω. (Contributed by Mario Carneiro, 29-May-2015.) |
⊢ (((𝐴 ∈ (ω ↑o 𝐶) ∧ 𝐵 ∈ On) ∧ (ω ↑o 𝐶) ⊆ 𝐵) → (𝐴 +o 𝐵) = 𝐵) | ||
Theorem | omabslem 8440 | Lemma for omabs 8441. (Contributed by Mario Carneiro, 30-May-2015.) |
⊢ ((ω ∈ On ∧ 𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → (𝐴 ·o ω) = ω) | ||
Theorem | omabs 8441 | Ordinal multiplication is also absorbed by powers of ω. (Contributed by Mario Carneiro, 30-May-2015.) |
⊢ (((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ∧ (𝐵 ∈ On ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (ω ↑o 𝐵)) = (ω ↑o 𝐵)) | ||
Theorem | nnm1 8442 | Multiply an element of ω by 1o. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴) | ||
Theorem | nnm2 8443 | Multiply an element of ω by 2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴)) | ||
Theorem | nn2m 8444 | Multiply an element of ω by 2o. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ω → (2o ·o 𝐴) = (𝐴 +o 𝐴)) | ||
Theorem | nnneo 8445 | If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2o ·o 𝐴)) → ¬ suc 𝐶 = (2o ·o 𝐵)) | ||
Theorem | nneob 8446* | A natural number is even iff its successor is odd. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
⊢ (𝐴 ∈ ω → (∃𝑥 ∈ ω 𝐴 = (2o ·o 𝑥) ↔ ¬ ∃𝑥 ∈ ω suc 𝐴 = (2o ·o 𝑥))) | ||
Theorem | omsmolem 8447* | Lemma for omsmo 8448. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.) |
⊢ (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧 ∈ 𝑦 → (𝐹‘𝑧) ∈ (𝐹‘𝑦)))) | ||
Theorem | omsmo 8448* | A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.) |
⊢ (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω–1-1→𝐴) | ||
Theorem | omopthlem1 8449 | Lemma for omopthi 8451. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐶 ∈ ω ⇒ ⊢ (𝐴 ∈ 𝐶 → ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶)) | ||
Theorem | omopthlem2 8450 | Lemma for omopthi 8451. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐶 ∈ ω & ⊢ 𝐷 ∈ ω ⇒ ⊢ ((𝐴 +o 𝐵) ∈ 𝐶 → ¬ ((𝐶 ·o 𝐶) +o 𝐷) = (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵)) | ||
Theorem | omopthi 8451 | An ordered pair theorem for ω. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 13912. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐶 ∈ ω & ⊢ 𝐷 ∈ ω ⇒ ⊢ ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
Theorem | omopth 8452 | An ordered pair theorem for finite integers. Analogous to nn0opthi 13912. (Contributed by Scott Fenton, 1-May-2012.) |
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ ω)) → ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Syntax | wer 8453 | Extend the definition of a wff to include the equivalence predicate. |
wff 𝑅 Er 𝐴 | ||
Syntax | cec 8454 | Extend the definition of a class to include equivalence class. |
class [𝐴]𝑅 | ||
Syntax | cqs 8455 | Extend the definition of a class to include quotient set. |
class (𝐴 / 𝑅) | ||
Definition | df-er 8456 | Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 8457 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 8476, ersymb 8470, and ertr 8471. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.) |
⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | ||
Theorem | dfer2 8457* | Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)))) | ||
Definition | df-ec 8458 | Define the 𝑅-coset of 𝐴. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of 𝐴 modulo 𝑅 when 𝑅 is an equivalence relation (i.e. when Er 𝑅; see dfer2 8457). In this case, 𝐴 is a representative (member) of the equivalence class [𝐴]𝑅, which contains all sets that are equivalent to 𝐴. Definition of [Enderton] p. 57 uses the notation [𝐴] (subscript) 𝑅, although we simply follow the brackets by 𝑅 since we don't have subscripted expressions. For an alternate definition, see dfec2 8459. (Contributed by NM, 23-Jul-1995.) |
⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | ||
Theorem | dfec2 8459* | Alternate definition of 𝑅-coset of 𝐴. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝐴 ∈ 𝑉 → [𝐴]𝑅 = {𝑦 ∣ 𝐴𝑅𝑦}) | ||
Theorem | ecexg 8460 | An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.) |
⊢ (𝑅 ∈ 𝐵 → [𝐴]𝑅 ∈ V) | ||
Theorem | ecexr 8461 | A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) | ||
Definition | df-qs 8462* | Define quotient set. 𝑅 is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.) |
⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | ||
Theorem | ereq1 8463 | Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝑅 = 𝑆 → (𝑅 Er 𝐴 ↔ 𝑆 Er 𝐴)) | ||
Theorem | ereq2 8464 | Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝐴 = 𝐵 → (𝑅 Er 𝐴 ↔ 𝑅 Er 𝐵)) | ||
Theorem | errel 8465 | An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝑅 Er 𝐴 → Rel 𝑅) | ||
Theorem | erdm 8466 | The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | ||
Theorem | ercl 8467 | Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑋) | ||
Theorem | ersym 8468 | An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐵𝑅𝐴) | ||
Theorem | ercl2 8469 | Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑋) | ||
Theorem | ersymb 8470 | An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) ⇒ ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐵𝑅𝐴)) | ||
Theorem | ertr 8471 | An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) ⇒ ⊢ (𝜑 → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | ||
Theorem | ertrd 8472 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | ertr2d 8473 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐶𝑅𝐴) | ||
Theorem | ertr3d 8474 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐵𝑅𝐴) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | ertr4d 8475 | A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐶𝑅𝐵) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐶) | ||
Theorem | erref 8476 | An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → 𝑅 Er 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐴𝑅𝐴) | ||
Theorem | ercnv 8477 | The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝑅 Er 𝐴 → ◡𝑅 = 𝑅) | ||
Theorem | errn 8478 | The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | ||
Theorem | erssxp 8479 | An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) | ||
Theorem | erex 8480 | An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝑅 Er 𝐴 → (𝐴 ∈ 𝑉 → 𝑅 ∈ V)) | ||
Theorem | erexb 8481 | An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V)) | ||
Theorem | iserd 8482* | A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ (𝜑 → Rel 𝑅) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦𝑅𝑥) & ⊢ ((𝜑 ∧ (𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧)) → 𝑥𝑅𝑧) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥)) ⇒ ⊢ (𝜑 → 𝑅 Er 𝐴) | ||
Theorem | iseri 8483* | A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 8482, which avoids the need to provide a "dummy antecedent" 𝜑 if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.) |
⊢ Rel 𝑅 & ⊢ (𝑥𝑅𝑦 → 𝑦𝑅𝑥) & ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) & ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥) ⇒ ⊢ 𝑅 Er 𝐴 | ||
Theorem | iseriALT 8484* | Alternate proof of iseri 8483, avoiding the usage of mptru 1546 and ⊤ as antecedent by using ax-mp 5 and one of the hypotheses as antecedent. This results, however, in a slightly longer proof. (Contributed by AV, 30-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Rel 𝑅 & ⊢ (𝑥𝑅𝑦 → 𝑦𝑅𝑥) & ⊢ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) & ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥𝑅𝑥) ⇒ ⊢ 𝑅 Er 𝐴 | ||
Theorem | brdifun 8485 | Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
Theorem | swoer 8486* | Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) ⇒ ⊢ (𝜑 → 𝑅 Er 𝑋) | ||
Theorem | swoord1 8487* | The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) | ||
Theorem | swoord2 8488* | The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐴𝑅𝐵) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ↔ 𝐶 < 𝐵)) | ||
Theorem | swoso 8489* | If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014.) |
⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) & ⊢ (𝜑 → 𝑌 ⊆ 𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → < Or 𝑌) | ||
Theorem | eqerlem 8490* | Lemma for eqer 8491. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} ⇒ ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | ||
Theorem | eqer 8491* | Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.) |
⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} ⇒ ⊢ 𝑅 Er V | ||
Theorem | ider 8492 | The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.) |
⊢ I Er V | ||
Theorem | 0er 8493 | The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.) |
⊢ ∅ Er ∅ | ||
Theorem | eceq1 8494 | Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) | ||
Theorem | eceq1d 8495 | Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → [𝐴]𝐶 = [𝐵]𝐶) | ||
Theorem | eceq2 8496 | Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) | ||
Theorem | eceq2i 8497 | Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, inference version. (Contributed by Peter Mazsa, 11-May-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ [𝐶]𝐴 = [𝐶]𝐵 | ||
Theorem | eceq2d 8498 | Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → [𝐶]𝐴 = [𝐶]𝐵) | ||
Theorem | elecg 8499 | Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | ||
Theorem | elec 8500 | Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |