Step | Hyp | Ref
| Expression |
1 | | ocvfval.o |
. 2
⊢ ⊥ =
(ocv‘𝑊) |
2 | | elex 3440 |
. . 3
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
3 | | fveq2 6756 |
. . . . . . 7
⊢ (ℎ = 𝑊 → (Base‘ℎ) = (Base‘𝑊)) |
4 | | ocvfval.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
5 | 3, 4 | eqtr4di 2797 |
. . . . . 6
⊢ (ℎ = 𝑊 → (Base‘ℎ) = 𝑉) |
6 | 5 | pweqd 4549 |
. . . . 5
⊢ (ℎ = 𝑊 → 𝒫 (Base‘ℎ) = 𝒫 𝑉) |
7 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 →
(·𝑖‘ℎ) =
(·𝑖‘𝑊)) |
8 | | ocvfval.i |
. . . . . . . . . 10
⊢ , =
(·𝑖‘𝑊) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 →
(·𝑖‘ℎ) = , ) |
10 | 9 | oveqd 7272 |
. . . . . . . 8
⊢ (ℎ = 𝑊 → (𝑥(·𝑖‘ℎ)𝑦) = (𝑥 , 𝑦)) |
11 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 → (Scalar‘ℎ) = (Scalar‘𝑊)) |
12 | | ocvfval.f |
. . . . . . . . . . 11
⊢ 𝐹 = (Scalar‘𝑊) |
13 | 11, 12 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → (Scalar‘ℎ) = 𝐹) |
14 | 13 | fveq2d 6760 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 →
(0g‘(Scalar‘ℎ)) = (0g‘𝐹)) |
15 | | ocvfval.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐹) |
16 | 14, 15 | eqtr4di 2797 |
. . . . . . . 8
⊢ (ℎ = 𝑊 →
(0g‘(Scalar‘ℎ)) = 0 ) |
17 | 10, 16 | eqeq12d 2754 |
. . . . . . 7
⊢ (ℎ = 𝑊 → ((𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ)) ↔ (𝑥 , 𝑦) = 0 )) |
18 | 17 | ralbidv 3120 |
. . . . . 6
⊢ (ℎ = 𝑊 → (∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ)) ↔ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 )) |
19 | 5, 18 | rabeqbidv 3410 |
. . . . 5
⊢ (ℎ = 𝑊 → {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))} = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) |
20 | 6, 19 | mpteq12dv 5161 |
. . . 4
⊢ (ℎ = 𝑊 → (𝑠 ∈ 𝒫 (Base‘ℎ) ↦ {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))}) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) |
21 | | df-ocv 20780 |
. . . 4
⊢ ocv =
(ℎ ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘ℎ) ↦
{𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) |
22 | | eqid 2738 |
. . . . . 6
⊢ (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) |
23 | 4 | fvexi 6770 |
. . . . . . . 8
⊢ 𝑉 ∈ V |
24 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 } ⊆ 𝑉 |
25 | 23, 24 | elpwi2 5265 |
. . . . . . 7
⊢ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉 |
26 | 25 | a1i 11 |
. . . . . 6
⊢ (𝑠 ∈ 𝒫 𝑉 → {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉) |
27 | 22, 26 | fmpti 6968 |
. . . . 5
⊢ (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉 |
28 | 23 | pwex 5298 |
. . . . 5
⊢ 𝒫
𝑉 ∈ V |
29 | | fex2 7754 |
. . . . 5
⊢ (((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V) → (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) ∈
V) |
30 | 27, 28, 28, 29 | mp3an 1459 |
. . . 4
⊢ (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) ∈
V |
31 | 20, 21, 30 | fvmpt 6857 |
. . 3
⊢ (𝑊 ∈ V →
(ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) |
32 | 2, 31 | syl 17 |
. 2
⊢ (𝑊 ∈ 𝑋 → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) |
33 | 1, 32 | eqtrid 2790 |
1
⊢ (𝑊 ∈ 𝑋 → ⊥ = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) |