MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvfval Structured version   Visualization version   GIF version

Theorem ocvfval 21575
Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvfval (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Distinct variable groups:   𝑥,𝑠,𝑦, 0   𝑉,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   , ,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑠)   (𝑥,𝑦,𝑠)   𝑋(𝑥,𝑦,𝑠)

Proof of Theorem ocvfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ocvfval.o . 2 = (ocv‘𝑊)
2 elex 3468 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6858 . . . . . . 7 ( = 𝑊 → (Base‘) = (Base‘𝑊))
4 ocvfval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2782 . . . . . 6 ( = 𝑊 → (Base‘) = 𝑉)
65pweqd 4580 . . . . 5 ( = 𝑊 → 𝒫 (Base‘) = 𝒫 𝑉)
7 fveq2 6858 . . . . . . . . . 10 ( = 𝑊 → (·𝑖) = (·𝑖𝑊))
8 ocvfval.i . . . . . . . . . 10 , = (·𝑖𝑊)
97, 8eqtr4di 2782 . . . . . . . . 9 ( = 𝑊 → (·𝑖) = , )
109oveqd 7404 . . . . . . . 8 ( = 𝑊 → (𝑥(·𝑖)𝑦) = (𝑥 , 𝑦))
11 fveq2 6858 . . . . . . . . . . 11 ( = 𝑊 → (Scalar‘) = (Scalar‘𝑊))
12 ocvfval.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
1311, 12eqtr4di 2782 . . . . . . . . . 10 ( = 𝑊 → (Scalar‘) = 𝐹)
1413fveq2d 6862 . . . . . . . . 9 ( = 𝑊 → (0g‘(Scalar‘)) = (0g𝐹))
15 ocvfval.z . . . . . . . . 9 0 = (0g𝐹)
1614, 15eqtr4di 2782 . . . . . . . 8 ( = 𝑊 → (0g‘(Scalar‘)) = 0 )
1710, 16eqeq12d 2745 . . . . . . 7 ( = 𝑊 → ((𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ (𝑥 , 𝑦) = 0 ))
1817ralbidv 3156 . . . . . 6 ( = 𝑊 → (∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 ))
195, 18rabeqbidv 3424 . . . . 5 ( = 𝑊 → {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))} = {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
206, 19mpteq12dv 5194 . . . 4 ( = 𝑊 → (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
21 df-ocv 21572 . . . 4 ocv = ( ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}))
22 eqid 2729 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
234fvexi 6872 . . . . . . . 8 𝑉 ∈ V
24 ssrab2 4043 . . . . . . . 8 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ⊆ 𝑉
2523, 24elpwi2 5290 . . . . . . 7 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉
2625a1i 11 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 → {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉)
2722, 26fmpti 7084 . . . . 5 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉
2823pwex 5335 . . . . 5 𝒫 𝑉 ∈ V
29 fex2 7912 . . . . 5 (((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V) → (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V)
3027, 28, 28, 29mp3an 1463 . . . 4 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V
3120, 21, 30fvmpt 6968 . . 3 (𝑊 ∈ V → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
322, 31syl 17 . 2 (𝑊𝑋 → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
331, 32eqtrid 2776 1 (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  𝒫 cpw 4563  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223  ·𝑖cip 17225  0gc0g 17402  ocvcocv 21569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-ocv 21572
This theorem is referenced by:  ocvval  21576  elocv  21577
  Copyright terms: Public domain W3C validator