MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvfval Structured version   Visualization version   GIF version

Theorem ocvfval 21702
Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvfval (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Distinct variable groups:   𝑥,𝑠,𝑦, 0   𝑉,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   , ,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑠)   (𝑥,𝑦,𝑠)   𝑋(𝑥,𝑦,𝑠)

Proof of Theorem ocvfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ocvfval.o . 2 = (ocv‘𝑊)
2 elex 3499 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6907 . . . . . . 7 ( = 𝑊 → (Base‘) = (Base‘𝑊))
4 ocvfval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2793 . . . . . 6 ( = 𝑊 → (Base‘) = 𝑉)
65pweqd 4622 . . . . 5 ( = 𝑊 → 𝒫 (Base‘) = 𝒫 𝑉)
7 fveq2 6907 . . . . . . . . . 10 ( = 𝑊 → (·𝑖) = (·𝑖𝑊))
8 ocvfval.i . . . . . . . . . 10 , = (·𝑖𝑊)
97, 8eqtr4di 2793 . . . . . . . . 9 ( = 𝑊 → (·𝑖) = , )
109oveqd 7448 . . . . . . . 8 ( = 𝑊 → (𝑥(·𝑖)𝑦) = (𝑥 , 𝑦))
11 fveq2 6907 . . . . . . . . . . 11 ( = 𝑊 → (Scalar‘) = (Scalar‘𝑊))
12 ocvfval.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
1311, 12eqtr4di 2793 . . . . . . . . . 10 ( = 𝑊 → (Scalar‘) = 𝐹)
1413fveq2d 6911 . . . . . . . . 9 ( = 𝑊 → (0g‘(Scalar‘)) = (0g𝐹))
15 ocvfval.z . . . . . . . . 9 0 = (0g𝐹)
1614, 15eqtr4di 2793 . . . . . . . 8 ( = 𝑊 → (0g‘(Scalar‘)) = 0 )
1710, 16eqeq12d 2751 . . . . . . 7 ( = 𝑊 → ((𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ (𝑥 , 𝑦) = 0 ))
1817ralbidv 3176 . . . . . 6 ( = 𝑊 → (∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 ))
195, 18rabeqbidv 3452 . . . . 5 ( = 𝑊 → {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))} = {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
206, 19mpteq12dv 5239 . . . 4 ( = 𝑊 → (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
21 df-ocv 21699 . . . 4 ocv = ( ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}))
22 eqid 2735 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
234fvexi 6921 . . . . . . . 8 𝑉 ∈ V
24 ssrab2 4090 . . . . . . . 8 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ⊆ 𝑉
2523, 24elpwi2 5341 . . . . . . 7 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉
2625a1i 11 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 → {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉)
2722, 26fmpti 7132 . . . . 5 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉
2823pwex 5386 . . . . 5 𝒫 𝑉 ∈ V
29 fex2 7957 . . . . 5 (((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V) → (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V)
3027, 28, 28, 29mp3an 1460 . . . 4 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V
3120, 21, 30fvmpt 7016 . . 3 (𝑊 ∈ V → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
322, 31syl 17 . 2 (𝑊𝑋 → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
331, 32eqtrid 2787 1 (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  𝒫 cpw 4605  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  Scalarcsca 17301  ·𝑖cip 17303  0gc0g 17486  ocvcocv 21696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-ocv 21699
This theorem is referenced by:  ocvval  21703  elocv  21704
  Copyright terms: Public domain W3C validator