MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvfval Structured version   Visualization version   GIF version

Theorem ocvfval 20359
Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvfval (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Distinct variable groups:   𝑥,𝑠,𝑦, 0   𝑉,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   , ,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑠)   (𝑥,𝑦,𝑠)   𝑋(𝑥,𝑦,𝑠)

Proof of Theorem ocvfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ocvfval.o . 2 = (ocv‘𝑊)
2 elex 3462 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6649 . . . . . . 7 ( = 𝑊 → (Base‘) = (Base‘𝑊))
4 ocvfval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4eqtr4di 2854 . . . . . 6 ( = 𝑊 → (Base‘) = 𝑉)
65pweqd 4519 . . . . 5 ( = 𝑊 → 𝒫 (Base‘) = 𝒫 𝑉)
7 fveq2 6649 . . . . . . . . . 10 ( = 𝑊 → (·𝑖) = (·𝑖𝑊))
8 ocvfval.i . . . . . . . . . 10 , = (·𝑖𝑊)
97, 8eqtr4di 2854 . . . . . . . . 9 ( = 𝑊 → (·𝑖) = , )
109oveqd 7156 . . . . . . . 8 ( = 𝑊 → (𝑥(·𝑖)𝑦) = (𝑥 , 𝑦))
11 fveq2 6649 . . . . . . . . . . 11 ( = 𝑊 → (Scalar‘) = (Scalar‘𝑊))
12 ocvfval.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
1311, 12eqtr4di 2854 . . . . . . . . . 10 ( = 𝑊 → (Scalar‘) = 𝐹)
1413fveq2d 6653 . . . . . . . . 9 ( = 𝑊 → (0g‘(Scalar‘)) = (0g𝐹))
15 ocvfval.z . . . . . . . . 9 0 = (0g𝐹)
1614, 15eqtr4di 2854 . . . . . . . 8 ( = 𝑊 → (0g‘(Scalar‘)) = 0 )
1710, 16eqeq12d 2817 . . . . . . 7 ( = 𝑊 → ((𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ (𝑥 , 𝑦) = 0 ))
1817ralbidv 3165 . . . . . 6 ( = 𝑊 → (∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 ))
195, 18rabeqbidv 3436 . . . . 5 ( = 𝑊 → {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))} = {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
206, 19mpteq12dv 5118 . . . 4 ( = 𝑊 → (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
21 df-ocv 20356 . . . 4 ocv = ( ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}))
22 eqid 2801 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
234fvexi 6663 . . . . . . . 8 𝑉 ∈ V
24 ssrab2 4010 . . . . . . . 8 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ⊆ 𝑉
2523, 24elpwi2 5216 . . . . . . 7 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉
2625a1i 11 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 → {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉)
2722, 26fmpti 6857 . . . . 5 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉
2823pwex 5249 . . . . 5 𝒫 𝑉 ∈ V
29 fex2 7624 . . . . 5 (((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V) → (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V)
3027, 28, 28, 29mp3an 1458 . . . 4 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V
3120, 21, 30fvmpt 6749 . . 3 (𝑊 ∈ V → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
322, 31syl 17 . 2 (𝑊𝑋 → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
331, 32syl5eq 2848 1 (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  wral 3109  {crab 3113  Vcvv 3444  𝒫 cpw 4500  cmpt 5113  wf 6324  cfv 6328  (class class class)co 7139  Basecbs 16479  Scalarcsca 16564  ·𝑖cip 16566  0gc0g 16709  ocvcocv 20353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-ocv 20356
This theorem is referenced by:  ocvval  20360  elocv  20361
  Copyright terms: Public domain W3C validator