MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvfval Structured version   Visualization version   GIF version

Theorem ocvfval 20502
Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ocvfval.v 𝑉 = (Base‘𝑊)
ocvfval.i , = (·𝑖𝑊)
ocvfval.f 𝐹 = (Scalar‘𝑊)
ocvfval.z 0 = (0g𝐹)
ocvfval.o = (ocv‘𝑊)
Assertion
Ref Expression
ocvfval (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Distinct variable groups:   𝑥,𝑠,𝑦, 0   𝑉,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   , ,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑠)   (𝑥,𝑦,𝑠)   𝑋(𝑥,𝑦,𝑠)

Proof of Theorem ocvfval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ocvfval.o . 2 = (ocv‘𝑊)
2 elex 3427 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6493 . . . . . . 7 ( = 𝑊 → (Base‘) = (Base‘𝑊))
4 ocvfval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4syl6eqr 2826 . . . . . 6 ( = 𝑊 → (Base‘) = 𝑉)
65pweqd 4421 . . . . 5 ( = 𝑊 → 𝒫 (Base‘) = 𝒫 𝑉)
7 fveq2 6493 . . . . . . . . . 10 ( = 𝑊 → (·𝑖) = (·𝑖𝑊))
8 ocvfval.i . . . . . . . . . 10 , = (·𝑖𝑊)
97, 8syl6eqr 2826 . . . . . . . . 9 ( = 𝑊 → (·𝑖) = , )
109oveqd 6987 . . . . . . . 8 ( = 𝑊 → (𝑥(·𝑖)𝑦) = (𝑥 , 𝑦))
11 fveq2 6493 . . . . . . . . . . 11 ( = 𝑊 → (Scalar‘) = (Scalar‘𝑊))
12 ocvfval.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
1311, 12syl6eqr 2826 . . . . . . . . . 10 ( = 𝑊 → (Scalar‘) = 𝐹)
1413fveq2d 6497 . . . . . . . . 9 ( = 𝑊 → (0g‘(Scalar‘)) = (0g𝐹))
15 ocvfval.z . . . . . . . . 9 0 = (0g𝐹)
1614, 15syl6eqr 2826 . . . . . . . 8 ( = 𝑊 → (0g‘(Scalar‘)) = 0 )
1710, 16eqeq12d 2787 . . . . . . 7 ( = 𝑊 → ((𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ (𝑥 , 𝑦) = 0 ))
1817ralbidv 3141 . . . . . 6 ( = 𝑊 → (∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘)) ↔ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 ))
195, 18rabeqbidv 3402 . . . . 5 ( = 𝑊 → {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))} = {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
206, 19mpteq12dv 5006 . . . 4 ( = 𝑊 → (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
21 df-ocv 20499 . . . 4 ocv = ( ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}))
22 eqid 2772 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 })
234fvexi 6507 . . . . . . . 8 𝑉 ∈ V
24 ssrab2 3942 . . . . . . . 8 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ⊆ 𝑉
2523, 24elpwi2 5099 . . . . . . 7 {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉
2625a1i 11 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 → {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉)
2722, 26fmpti 6693 . . . . 5 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉
2823pwex 5128 . . . . 5 𝒫 𝑉 ∈ V
29 fex2 7447 . . . . 5 (((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V) → (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V)
3027, 28, 28, 29mp3an 1440 . . . 4 (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }) ∈ V
3120, 21, 30fvmpt 6589 . . 3 (𝑊 ∈ V → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
322, 31syl 17 . 2 (𝑊𝑋 → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
331, 32syl5eq 2820 1 (𝑊𝑋 = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥𝑉 ∣ ∀𝑦𝑠 (𝑥 , 𝑦) = 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2048  wral 3082  {crab 3086  Vcvv 3409  𝒫 cpw 4416  cmpt 5002  wf 6178  cfv 6182  (class class class)co 6970  Basecbs 16329  Scalarcsca 16414  ·𝑖cip 16416  0gc0g 16559  ocvcocv 20496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-fv 6190  df-ov 6973  df-ocv 20499
This theorem is referenced by:  ocvval  20503  elocv  20504
  Copyright terms: Public domain W3C validator