| Step | Hyp | Ref
| Expression |
| 1 | | ocvfval.o |
. 2
⊢ ⊥ =
(ocv‘𝑊) |
| 2 | | elex 3485 |
. . 3
⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) |
| 3 | | fveq2 6887 |
. . . . . . 7
⊢ (ℎ = 𝑊 → (Base‘ℎ) = (Base‘𝑊)) |
| 4 | | ocvfval.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
| 5 | 3, 4 | eqtr4di 2787 |
. . . . . 6
⊢ (ℎ = 𝑊 → (Base‘ℎ) = 𝑉) |
| 6 | 5 | pweqd 4599 |
. . . . 5
⊢ (ℎ = 𝑊 → 𝒫 (Base‘ℎ) = 𝒫 𝑉) |
| 7 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 →
(·𝑖‘ℎ) =
(·𝑖‘𝑊)) |
| 8 | | ocvfval.i |
. . . . . . . . . 10
⊢ , =
(·𝑖‘𝑊) |
| 9 | 7, 8 | eqtr4di 2787 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 →
(·𝑖‘ℎ) = , ) |
| 10 | 9 | oveqd 7431 |
. . . . . . . 8
⊢ (ℎ = 𝑊 → (𝑥(·𝑖‘ℎ)𝑦) = (𝑥 , 𝑦)) |
| 11 | | fveq2 6887 |
. . . . . . . . . . 11
⊢ (ℎ = 𝑊 → (Scalar‘ℎ) = (Scalar‘𝑊)) |
| 12 | | ocvfval.f |
. . . . . . . . . . 11
⊢ 𝐹 = (Scalar‘𝑊) |
| 13 | 11, 12 | eqtr4di 2787 |
. . . . . . . . . 10
⊢ (ℎ = 𝑊 → (Scalar‘ℎ) = 𝐹) |
| 14 | 13 | fveq2d 6891 |
. . . . . . . . 9
⊢ (ℎ = 𝑊 →
(0g‘(Scalar‘ℎ)) = (0g‘𝐹)) |
| 15 | | ocvfval.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐹) |
| 16 | 14, 15 | eqtr4di 2787 |
. . . . . . . 8
⊢ (ℎ = 𝑊 →
(0g‘(Scalar‘ℎ)) = 0 ) |
| 17 | 10, 16 | eqeq12d 2750 |
. . . . . . 7
⊢ (ℎ = 𝑊 → ((𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ)) ↔ (𝑥 , 𝑦) = 0 )) |
| 18 | 17 | ralbidv 3165 |
. . . . . 6
⊢ (ℎ = 𝑊 → (∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ)) ↔ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 )) |
| 19 | 5, 18 | rabeqbidv 3439 |
. . . . 5
⊢ (ℎ = 𝑊 → {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))} = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) |
| 20 | 6, 19 | mpteq12dv 5215 |
. . . 4
⊢ (ℎ = 𝑊 → (𝑠 ∈ 𝒫 (Base‘ℎ) ↦ {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))}) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) |
| 21 | | df-ocv 21648 |
. . . 4
⊢ ocv =
(ℎ ∈ V ↦ (𝑠 ∈ 𝒫
(Base‘ℎ) ↦
{𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) |
| 22 | | eqid 2734 |
. . . . . 6
⊢ (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) |
| 23 | 4 | fvexi 6901 |
. . . . . . . 8
⊢ 𝑉 ∈ V |
| 24 | | ssrab2 4062 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 } ⊆ 𝑉 |
| 25 | 23, 24 | elpwi2 5317 |
. . . . . . 7
⊢ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉 |
| 26 | 25 | a1i 11 |
. . . . . 6
⊢ (𝑠 ∈ 𝒫 𝑉 → {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 } ∈ 𝒫 𝑉) |
| 27 | 22, 26 | fmpti 7113 |
. . . . 5
⊢ (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉 |
| 28 | 23 | pwex 5362 |
. . . . 5
⊢ 𝒫
𝑉 ∈ V |
| 29 | | fex2 7941 |
. . . . 5
⊢ (((𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }):𝒫 𝑉⟶𝒫 𝑉 ∧ 𝒫 𝑉 ∈ V ∧ 𝒫 𝑉 ∈ V) → (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) ∈
V) |
| 30 | 27, 28, 28, 29 | mp3an 1462 |
. . . 4
⊢ (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 }) ∈
V |
| 31 | 20, 21, 30 | fvmpt 6997 |
. . 3
⊢ (𝑊 ∈ V →
(ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) |
| 32 | 2, 31 | syl 17 |
. 2
⊢ (𝑊 ∈ 𝑋 → (ocv‘𝑊) = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) |
| 33 | 1, 32 | eqtrid 2781 |
1
⊢ (𝑊 ∈ 𝑋 → ⊥ = (𝑠 ∈ 𝒫 𝑉 ↦ {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ 𝑠 (𝑥 , 𝑦) = 0 })) |