Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-odd Structured version   Visualization version   GIF version

Definition df-odd 42557
 Description: Define the set of odd numbers. (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
df-odd Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ}

Detailed syntax breakdown of Definition df-odd
StepHypRef Expression
1 codd 42555 . 2 class Odd
2 vz . . . . . . 7 setvar 𝑧
32cv 1600 . . . . . 6 class 𝑧
4 c1 10273 . . . . . 6 class 1
5 caddc 10275 . . . . . 6 class +
63, 4, 5co 6922 . . . . 5 class (𝑧 + 1)
7 c2 11430 . . . . 5 class 2
8 cdiv 11032 . . . . 5 class /
96, 7, 8co 6922 . . . 4 class ((𝑧 + 1) / 2)
10 cz 11728 . . . 4 class
119, 10wcel 2106 . . 3 wff ((𝑧 + 1) / 2) ∈ ℤ
1211, 2, 10crab 3093 . 2 class {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ}
131, 12wceq 1601 1 wff Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ}
 Colors of variables: wff setvar class This definition is referenced by:  isodd  42559
 Copyright terms: Public domain W3C validator