Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isodd Structured version   Visualization version   GIF version

Theorem isodd 47753
Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
isodd (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ))

Proof of Theorem isodd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7359 . . . 4 (𝑧 = 𝑍 → (𝑧 + 1) = (𝑍 + 1))
21oveq1d 7367 . . 3 (𝑧 = 𝑍 → ((𝑧 + 1) / 2) = ((𝑍 + 1) / 2))
32eleq1d 2818 . 2 (𝑧 = 𝑍 → (((𝑧 + 1) / 2) ∈ ℤ ↔ ((𝑍 + 1) / 2) ∈ ℤ))
4 df-odd 47751 . 2 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ}
53, 4elrab2 3646 1 (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  (class class class)co 7352  1c1 11014   + caddc 11016   / cdiv 11781  2c2 12187  cz 12475   Odd codd 47749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-odd 47751
This theorem is referenced by:  oddz  47755  oddp1div2z  47757  isodd2  47759  evenm1odd  47763  evennodd  47767  oddneven  47768  onego  47770  zeoALTV  47794  oddp1evenALTV  47800  1oddALTV  47814
  Copyright terms: Public domain W3C validator