![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isodd | Structured version Visualization version GIF version |
Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
isodd | ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7400 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 + 1) = (𝑍 + 1)) | |
2 | 1 | oveq1d 7408 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑧 + 1) / 2) = ((𝑍 + 1) / 2)) |
3 | 2 | eleq1d 2817 | . 2 ⊢ (𝑧 = 𝑍 → (((𝑧 + 1) / 2) ∈ ℤ ↔ ((𝑍 + 1) / 2) ∈ ℤ)) |
4 | df-odd 46067 | . 2 ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | |
5 | 3, 4 | elrab2 3682 | 1 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 (class class class)co 7393 1c1 11093 + caddc 11095 / cdiv 11853 2c2 12249 ℤcz 12540 Odd codd 46065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-iota 6484 df-fv 6540 df-ov 7396 df-odd 46067 |
This theorem is referenced by: oddz 46071 oddp1div2z 46073 isodd2 46075 evenm1odd 46079 evennodd 46083 oddneven 46084 onego 46086 zeoALTV 46110 oddp1evenALTV 46116 1oddALTV 46130 |
Copyright terms: Public domain | W3C validator |