| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isodd | Structured version Visualization version GIF version | ||
| Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| isodd | ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 + 1) = (𝑍 + 1)) | |
| 2 | 1 | oveq1d 7367 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑧 + 1) / 2) = ((𝑍 + 1) / 2)) |
| 3 | 2 | eleq1d 2818 | . 2 ⊢ (𝑧 = 𝑍 → (((𝑧 + 1) / 2) ∈ ℤ ↔ ((𝑍 + 1) / 2) ∈ ℤ)) |
| 4 | df-odd 47751 | . 2 ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | |
| 5 | 3, 4 | elrab2 3646 | 1 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 1c1 11014 + caddc 11016 / cdiv 11781 2c2 12187 ℤcz 12475 Odd codd 47749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-odd 47751 |
| This theorem is referenced by: oddz 47755 oddp1div2z 47757 isodd2 47759 evenm1odd 47763 evennodd 47767 oddneven 47768 onego 47770 zeoALTV 47794 oddp1evenALTV 47800 1oddALTV 47814 |
| Copyright terms: Public domain | W3C validator |