Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isodd Structured version   Visualization version   GIF version

Theorem isodd 43966
Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
isodd (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ))

Proof of Theorem isodd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7137 . . . 4 (𝑧 = 𝑍 → (𝑧 + 1) = (𝑍 + 1))
21oveq1d 7145 . . 3 (𝑧 = 𝑍 → ((𝑧 + 1) / 2) = ((𝑍 + 1) / 2))
32eleq1d 2896 . 2 (𝑧 = 𝑍 → (((𝑧 + 1) / 2) ∈ ℤ ↔ ((𝑍 + 1) / 2) ∈ ℤ))
4 df-odd 43964 . 2 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ}
53, 4elrab2 3660 1 (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2115  (class class class)co 7130  1c1 10515   + caddc 10517   / cdiv 11274  2c2 11670  cz 11959   Odd codd 43962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-iota 6287  df-fv 6336  df-ov 7133  df-odd 43964
This theorem is referenced by:  oddz  43968  oddp1div2z  43970  isodd2  43972  evenm1odd  43976  evennodd  43980  oddneven  43981  onego  43983  zeoALTV  44007  oddp1evenALTV  44013  1oddALTV  44027
  Copyright terms: Public domain W3C validator