![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isodd | Structured version Visualization version GIF version |
Description: The predicate "is an odd number". An odd number is an integer which is not divisible by 2, i.e. the result of dividing the odd integer increased by 1 and then divided by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
isodd | ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7420 | . . . 4 ⊢ (𝑧 = 𝑍 → (𝑧 + 1) = (𝑍 + 1)) | |
2 | 1 | oveq1d 7428 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑧 + 1) / 2) = ((𝑍 + 1) / 2)) |
3 | 2 | eleq1d 2816 | . 2 ⊢ (𝑧 = 𝑍 → (((𝑧 + 1) / 2) ∈ ℤ ↔ ((𝑍 + 1) / 2) ∈ ℤ)) |
4 | df-odd 46595 | . 2 ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} | |
5 | 3, 4 | elrab2 3687 | 1 ⊢ (𝑍 ∈ Odd ↔ (𝑍 ∈ ℤ ∧ ((𝑍 + 1) / 2) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 (class class class)co 7413 1c1 11115 + caddc 11117 / cdiv 11877 2c2 12273 ℤcz 12564 Odd codd 46593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7416 df-odd 46595 |
This theorem is referenced by: oddz 46599 oddp1div2z 46601 isodd2 46603 evenm1odd 46607 evennodd 46611 oddneven 46612 onego 46614 zeoALTV 46638 oddp1evenALTV 46644 1oddALTV 46658 |
Copyright terms: Public domain | W3C validator |