Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iseven | Structured version Visualization version GIF version |
Description: The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
iseven | ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7349 | . . 3 ⊢ (𝑧 = 𝑍 → (𝑧 / 2) = (𝑍 / 2)) | |
2 | 1 | eleq1d 2822 | . 2 ⊢ (𝑧 = 𝑍 → ((𝑧 / 2) ∈ ℤ ↔ (𝑍 / 2) ∈ ℤ)) |
3 | df-even 45494 | . 2 ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | |
4 | 2, 3 | elrab2 3641 | 1 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 (class class class)co 7342 / cdiv 11738 2c2 12134 ℤcz 12425 Even ceven 45492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-iota 6436 df-fv 6492 df-ov 7345 df-even 45494 |
This theorem is referenced by: evenz 45498 evendiv2z 45500 evenm1odd 45507 evenp1odd 45508 oddp1eveni 45509 oddm1eveni 45510 evennodd 45511 oddneven 45512 enege 45513 zeoALTV 45538 oddm1evenALTV 45543 oddp1evenALTV 45544 0evenALTV 45556 2evenALTV 45560 6even 45579 8even 45581 |
Copyright terms: Public domain | W3C validator |