| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iseven | Structured version Visualization version GIF version | ||
| Description: The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| iseven | ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7348 | . . 3 ⊢ (𝑧 = 𝑍 → (𝑧 / 2) = (𝑍 / 2)) | |
| 2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑧 = 𝑍 → ((𝑧 / 2) ∈ ℤ ↔ (𝑍 / 2) ∈ ℤ)) |
| 3 | df-even 47657 | . 2 ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | |
| 4 | 2, 3 | elrab2 3645 | 1 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 / cdiv 11769 2c2 12175 ℤcz 12463 Even ceven 47655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-even 47657 |
| This theorem is referenced by: evenz 47661 evendiv2z 47663 evenm1odd 47670 evenp1odd 47671 oddp1eveni 47672 oddm1eveni 47673 evennodd 47674 oddneven 47675 enege 47676 zeoALTV 47701 oddm1evenALTV 47706 oddp1evenALTV 47707 0evenALTV 47719 2evenALTV 47723 6even 47742 8even 47744 |
| Copyright terms: Public domain | W3C validator |