![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iseven | Structured version Visualization version GIF version |
Description: The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
iseven | ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . . 3 ⊢ (𝑧 = 𝑍 → (𝑧 / 2) = (𝑍 / 2)) | |
2 | 1 | eleq1d 2819 | . 2 ⊢ (𝑧 = 𝑍 → ((𝑧 / 2) ∈ ℤ ↔ (𝑍 / 2) ∈ ℤ)) |
3 | df-even 46342 | . 2 ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | |
4 | 2, 3 | elrab2 3687 | 1 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7409 / cdiv 11871 2c2 12267 ℤcz 12558 Even ceven 46340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-even 46342 |
This theorem is referenced by: evenz 46346 evendiv2z 46348 evenm1odd 46355 evenp1odd 46356 oddp1eveni 46357 oddm1eveni 46358 evennodd 46359 oddneven 46360 enege 46361 zeoALTV 46386 oddm1evenALTV 46391 oddp1evenALTV 46392 0evenALTV 46404 2evenALTV 46408 6even 46427 8even 46429 |
Copyright terms: Public domain | W3C validator |