Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iseven Structured version   Visualization version   GIF version

Theorem iseven 47629
Description: The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
iseven (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))

Proof of Theorem iseven
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . 3 (𝑧 = 𝑍 → (𝑧 / 2) = (𝑍 / 2))
21eleq1d 2813 . 2 (𝑧 = 𝑍 → ((𝑧 / 2) ∈ ℤ ↔ (𝑍 / 2) ∈ ℤ))
3 df-even 47627 . 2 Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ}
42, 3elrab2 3662 1 (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387   / cdiv 11835  2c2 12241  cz 12529   Even ceven 47625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-even 47627
This theorem is referenced by:  evenz  47631  evendiv2z  47633  evenm1odd  47640  evenp1odd  47641  oddp1eveni  47642  oddm1eveni  47643  evennodd  47644  oddneven  47645  enege  47646  zeoALTV  47671  oddm1evenALTV  47676  oddp1evenALTV  47677  0evenALTV  47689  2evenALTV  47693  6even  47712  8even  47714
  Copyright terms: Public domain W3C validator