Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iseven Structured version   Visualization version   GIF version

Theorem iseven 47602
Description: The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.)
Assertion
Ref Expression
iseven (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))

Proof of Theorem iseven
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . 3 (𝑧 = 𝑍 → (𝑧 / 2) = (𝑍 / 2))
21eleq1d 2813 . 2 (𝑧 = 𝑍 → ((𝑧 / 2) ∈ ℤ ↔ (𝑍 / 2) ∈ ℤ))
3 df-even 47600 . 2 Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ}
42, 3elrab2 3659 1 (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7369   / cdiv 11811  2c2 12217  cz 12505   Even ceven 47598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-even 47600
This theorem is referenced by:  evenz  47604  evendiv2z  47606  evenm1odd  47613  evenp1odd  47614  oddp1eveni  47615  oddm1eveni  47616  evennodd  47617  oddneven  47618  enege  47619  zeoALTV  47644  oddm1evenALTV  47649  oddp1evenALTV  47650  0evenALTV  47662  2evenALTV  47666  6even  47685  8even  47687
  Copyright terms: Public domain W3C validator