| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iseven | Structured version Visualization version GIF version | ||
| Description: The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| iseven | ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7421 | . . 3 ⊢ (𝑧 = 𝑍 → (𝑧 / 2) = (𝑍 / 2)) | |
| 2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑧 = 𝑍 → ((𝑧 / 2) ∈ ℤ ↔ (𝑍 / 2) ∈ ℤ)) |
| 3 | df-even 47559 | . 2 ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | |
| 4 | 2, 3 | elrab2 3679 | 1 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7414 / cdiv 11903 2c2 12304 ℤcz 12597 Even ceven 47557 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-iota 6495 df-fv 6550 df-ov 7417 df-even 47559 |
| This theorem is referenced by: evenz 47563 evendiv2z 47565 evenm1odd 47572 evenp1odd 47573 oddp1eveni 47574 oddm1eveni 47575 evennodd 47576 oddneven 47577 enege 47578 zeoALTV 47603 oddm1evenALTV 47608 oddp1evenALTV 47609 0evenALTV 47621 2evenALTV 47625 6even 47644 8even 47646 |
| Copyright terms: Public domain | W3C validator |