MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18248
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18252, oduleval 18250, and oduleg 18251 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18454. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18247 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3447 . . 3 class V
42cv 1539 . . . 4 class 𝑤
5 cnx 17163 . . . . . 6 class ndx
6 cple 17227 . . . . . 6 class le
75, 6cfv 6511 . . . . 5 class (le‘ndx)
84, 6cfv 6511 . . . . . 6 class (le‘𝑤)
98ccnv 5637 . . . . 5 class (le‘𝑤)
107, 9cop 4595 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 17133 . . . 4 class sSet
124, 10, 11co 7387 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5188 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1540 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18249
  Copyright terms: Public domain W3C validator