| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version | ||
| Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18232, oduleval 18230,
and oduleg 18231 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18436. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | codu 18227 | . 2 class ODual | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3444 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . 4 class 𝑤 |
| 5 | cnx 17139 | . . . . . 6 class ndx | |
| 6 | cple 17203 | . . . . . 6 class le | |
| 7 | 5, 6 | cfv 6499 | . . . . 5 class (le‘ndx) |
| 8 | 4, 6 | cfv 6499 | . . . . . 6 class (le‘𝑤) |
| 9 | 8 | ccnv 5630 | . . . . 5 class ◡(le‘𝑤) |
| 10 | 7, 9 | cop 4591 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
| 11 | csts 17109 | . . . 4 class sSet | |
| 12 | 4, 10, 11 | co 7369 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
| 13 | 2, 3, 12 | cmpt 5183 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| 14 | 1, 13 | wceq 1540 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: oduval 18229 |
| Copyright terms: Public domain | W3C validator |