![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version |
Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18243, oduleval 18241,
and oduleg 18242 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18447. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), ◡(le‘𝑤)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | codu 18238 | . 2 class ODual | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3474 | . . 3 class V | |
4 | 2 | cv 1540 | . . . 4 class 𝑤 |
5 | cnx 17125 | . . . . . 6 class ndx | |
6 | cple 17203 | . . . . . 6 class le | |
7 | 5, 6 | cfv 6543 | . . . . 5 class (le‘ndx) |
8 | 4, 6 | cfv 6543 | . . . . . 6 class (le‘𝑤) |
9 | 8 | ccnv 5675 | . . . . 5 class ◡(le‘𝑤) |
10 | 7, 9 | cop 4634 | . . . 4 class ⟨(le‘ndx), ◡(le‘𝑤)⟩ |
11 | csts 17095 | . . . 4 class sSet | |
12 | 4, 10, 11 | co 7408 | . . 3 class (𝑤 sSet ⟨(le‘ndx), ◡(le‘𝑤)⟩) |
13 | 2, 3, 12 | cmpt 5231 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), ◡(le‘𝑤)⟩)) |
14 | 1, 13 | wceq 1541 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), ◡(le‘𝑤)⟩)) |
Colors of variables: wff setvar class |
This definition is referenced by: oduval 18240 |
Copyright terms: Public domain | W3C validator |