MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18240
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18244, oduleval 18242, and oduleg 18243 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18448. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18239 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3475 . . 3 class V
42cv 1541 . . . 4 class 𝑤
5 cnx 17126 . . . . . 6 class ndx
6 cple 17204 . . . . . 6 class le
75, 6cfv 6544 . . . . 5 class (le‘ndx)
84, 6cfv 6544 . . . . . 6 class (le‘𝑤)
98ccnv 5676 . . . . 5 class (le‘𝑤)
107, 9cop 4635 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 17096 . . . 4 class sSet
124, 10, 11co 7409 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5232 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1542 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18241
  Copyright terms: Public domain W3C validator