![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version |
Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18348, oduleval 18346,
and oduleg 18347 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18553. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | codu 18343 | . 2 class ODual | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3478 | . . 3 class V | |
4 | 2 | cv 1536 | . . . 4 class 𝑤 |
5 | cnx 17227 | . . . . . 6 class ndx | |
6 | cple 17305 | . . . . . 6 class le | |
7 | 5, 6 | cfv 6563 | . . . . 5 class (le‘ndx) |
8 | 4, 6 | cfv 6563 | . . . . . 6 class (le‘𝑤) |
9 | 8 | ccnv 5688 | . . . . 5 class ◡(le‘𝑤) |
10 | 7, 9 | cop 4637 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
11 | csts 17197 | . . . 4 class sSet | |
12 | 4, 10, 11 | co 7431 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
13 | 2, 3, 12 | cmpt 5231 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
14 | 1, 13 | wceq 1537 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Colors of variables: wff setvar class |
This definition is referenced by: oduval 18345 |
Copyright terms: Public domain | W3C validator |