| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version | ||
| Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18259, oduleval 18257,
and oduleg 18258 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18461. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | codu 18254 | . 2 class ODual | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3450 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . 4 class 𝑤 |
| 5 | cnx 17170 | . . . . . 6 class ndx | |
| 6 | cple 17234 | . . . . . 6 class le | |
| 7 | 5, 6 | cfv 6514 | . . . . 5 class (le‘ndx) |
| 8 | 4, 6 | cfv 6514 | . . . . . 6 class (le‘𝑤) |
| 9 | 8 | ccnv 5640 | . . . . 5 class ◡(le‘𝑤) |
| 10 | 7, 9 | cop 4598 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
| 11 | csts 17140 | . . . 4 class sSet | |
| 12 | 4, 10, 11 | co 7390 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
| 13 | 2, 3, 12 | cmpt 5191 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| 14 | 1, 13 | wceq 1540 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: oduval 18256 |
| Copyright terms: Public domain | W3C validator |