MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 17855
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 17859, oduleval 17857, and oduleg 17858 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 17914. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 17854 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3398 . . 3 class V
42cv 1541 . . . 4 class 𝑤
5 cnx 16583 . . . . . 6 class ndx
6 cple 16675 . . . . . 6 class le
75, 6cfv 6339 . . . . 5 class (le‘ndx)
84, 6cfv 6339 . . . . . 6 class (le‘𝑤)
98ccnv 5524 . . . . 5 class (le‘𝑤)
107, 9cop 4522 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 16584 . . . 4 class sSet
124, 10, 11co 7170 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5110 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1542 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  17856
  Copyright terms: Public domain W3C validator