![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version |
Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 17448, oduleval 17446,
and oduleg 17447 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 17503. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | codu 17443 | . 2 class ODual | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3385 | . . 3 class V | |
4 | 2 | cv 1652 | . . . 4 class 𝑤 |
5 | cnx 16181 | . . . . . 6 class ndx | |
6 | cple 16274 | . . . . . 6 class le | |
7 | 5, 6 | cfv 6101 | . . . . 5 class (le‘ndx) |
8 | 4, 6 | cfv 6101 | . . . . . 6 class (le‘𝑤) |
9 | 8 | ccnv 5311 | . . . . 5 class ◡(le‘𝑤) |
10 | 7, 9 | cop 4374 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
11 | csts 16182 | . . . 4 class sSet | |
12 | 4, 10, 11 | co 6878 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
13 | 2, 3, 12 | cmpt 4922 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
14 | 1, 13 | wceq 1653 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Colors of variables: wff setvar class |
This definition is referenced by: oduval 17445 |
Copyright terms: Public domain | W3C validator |