![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version |
Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18244, oduleval 18242,
and oduleg 18243 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18448. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), ◡(le‘𝑤)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | codu 18239 | . 2 class ODual | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3475 | . . 3 class V | |
4 | 2 | cv 1541 | . . . 4 class 𝑤 |
5 | cnx 17126 | . . . . . 6 class ndx | |
6 | cple 17204 | . . . . . 6 class le | |
7 | 5, 6 | cfv 6544 | . . . . 5 class (le‘ndx) |
8 | 4, 6 | cfv 6544 | . . . . . 6 class (le‘𝑤) |
9 | 8 | ccnv 5676 | . . . . 5 class ◡(le‘𝑤) |
10 | 7, 9 | cop 4635 | . . . 4 class ⟨(le‘ndx), ◡(le‘𝑤)⟩ |
11 | csts 17096 | . . . 4 class sSet | |
12 | 4, 10, 11 | co 7409 | . . 3 class (𝑤 sSet ⟨(le‘ndx), ◡(le‘𝑤)⟩) |
13 | 2, 3, 12 | cmpt 5232 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), ◡(le‘𝑤)⟩)) |
14 | 1, 13 | wceq 1542 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), ◡(le‘𝑤)⟩)) |
Colors of variables: wff setvar class |
This definition is referenced by: oduval 18241 |
Copyright terms: Public domain | W3C validator |