| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version | ||
| Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18197, oduleval 18195,
and oduleg 18196 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18401. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | codu 18192 | . 2 class ODual | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3436 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . 4 class 𝑤 |
| 5 | cnx 17104 | . . . . . 6 class ndx | |
| 6 | cple 17168 | . . . . . 6 class le | |
| 7 | 5, 6 | cfv 6482 | . . . . 5 class (le‘ndx) |
| 8 | 4, 6 | cfv 6482 | . . . . . 6 class (le‘𝑤) |
| 9 | 8 | ccnv 5618 | . . . . 5 class ◡(le‘𝑤) |
| 10 | 7, 9 | cop 4583 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
| 11 | csts 17074 | . . . 4 class sSet | |
| 12 | 4, 10, 11 | co 7349 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
| 13 | 2, 3, 12 | cmpt 5173 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| 14 | 1, 13 | wceq 1540 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: oduval 18194 |
| Copyright terms: Public domain | W3C validator |