MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18054
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18058, oduleval 18056, and oduleg 18057 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18262. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18053 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3437 . . 3 class V
42cv 1538 . . . 4 class 𝑤
5 cnx 16943 . . . . . 6 class ndx
6 cple 17018 . . . . . 6 class le
75, 6cfv 6458 . . . . 5 class (le‘ndx)
84, 6cfv 6458 . . . . . 6 class (le‘𝑤)
98ccnv 5599 . . . . 5 class (le‘𝑤)
107, 9cop 4571 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 16913 . . . 4 class sSet
124, 10, 11co 7307 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5164 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1539 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18055
  Copyright terms: Public domain W3C validator