|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version | ||
| Description: Define the dual of an
ordered structure, which replaces the order
     component of the structure with its reverse.  See odubas 18337, oduleval 18335,
     and oduleg 18336 for its principal properties. EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18541. (Contributed by Stefan O'Rear, 29-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | codu 18332 | . 2 class ODual | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3479 | . . 3 class V | |
| 4 | 2 | cv 1538 | . . . 4 class 𝑤 | 
| 5 | cnx 17231 | . . . . . 6 class ndx | |
| 6 | cple 17305 | . . . . . 6 class le | |
| 7 | 5, 6 | cfv 6560 | . . . . 5 class (le‘ndx) | 
| 8 | 4, 6 | cfv 6560 | . . . . . 6 class (le‘𝑤) | 
| 9 | 8 | ccnv 5683 | . . . . 5 class ◡(le‘𝑤) | 
| 10 | 7, 9 | cop 4631 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 | 
| 11 | csts 17201 | . . . 4 class sSet | |
| 12 | 4, 10, 11 | co 7432 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) | 
| 13 | 2, 3, 12 | cmpt 5224 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) | 
| 14 | 1, 13 | wceq 1539 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: oduval 18334 | 
| Copyright terms: Public domain | W3C validator |