Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version |
Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18058, oduleval 18056,
and oduleg 18057 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18262. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | codu 18053 | . 2 class ODual | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3437 | . . 3 class V | |
4 | 2 | cv 1538 | . . . 4 class 𝑤 |
5 | cnx 16943 | . . . . . 6 class ndx | |
6 | cple 17018 | . . . . . 6 class le | |
7 | 5, 6 | cfv 6458 | . . . . 5 class (le‘ndx) |
8 | 4, 6 | cfv 6458 | . . . . . 6 class (le‘𝑤) |
9 | 8 | ccnv 5599 | . . . . 5 class ◡(le‘𝑤) |
10 | 7, 9 | cop 4571 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
11 | csts 16913 | . . . 4 class sSet | |
12 | 4, 10, 11 | co 7307 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
13 | 2, 3, 12 | cmpt 5164 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
14 | 1, 13 | wceq 1539 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Colors of variables: wff setvar class |
This definition is referenced by: oduval 18055 |
Copyright terms: Public domain | W3C validator |