MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18255
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18259, oduleval 18257, and oduleg 18258 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18461. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18254 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3450 . . 3 class V
42cv 1539 . . . 4 class 𝑤
5 cnx 17170 . . . . . 6 class ndx
6 cple 17234 . . . . . 6 class le
75, 6cfv 6514 . . . . 5 class (le‘ndx)
84, 6cfv 6514 . . . . . 6 class (le‘𝑤)
98ccnv 5640 . . . . 5 class (le‘𝑤)
107, 9cop 4598 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 17140 . . . 4 class sSet
124, 10, 11co 7390 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5191 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1540 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18256
  Copyright terms: Public domain W3C validator