Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version |
Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 17990, oduleval 17988,
and oduleg 17989 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18194. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | codu 17985 | . 2 class ODual | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3430 | . . 3 class V | |
4 | 2 | cv 1540 | . . . 4 class 𝑤 |
5 | cnx 16875 | . . . . . 6 class ndx | |
6 | cple 16950 | . . . . . 6 class le | |
7 | 5, 6 | cfv 6430 | . . . . 5 class (le‘ndx) |
8 | 4, 6 | cfv 6430 | . . . . . 6 class (le‘𝑤) |
9 | 8 | ccnv 5587 | . . . . 5 class ◡(le‘𝑤) |
10 | 7, 9 | cop 4572 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
11 | csts 16845 | . . . 4 class sSet | |
12 | 4, 10, 11 | co 7268 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
13 | 2, 3, 12 | cmpt 5161 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
14 | 1, 13 | wceq 1541 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Colors of variables: wff setvar class |
This definition is referenced by: oduval 17987 |
Copyright terms: Public domain | W3C validator |