![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version |
Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18361, oduleval 18359,
and oduleg 18360 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18565. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | codu 18356 | . 2 class ODual | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3488 | . . 3 class V | |
4 | 2 | cv 1536 | . . . 4 class 𝑤 |
5 | cnx 17240 | . . . . . 6 class ndx | |
6 | cple 17318 | . . . . . 6 class le | |
7 | 5, 6 | cfv 6573 | . . . . 5 class (le‘ndx) |
8 | 4, 6 | cfv 6573 | . . . . . 6 class (le‘𝑤) |
9 | 8 | ccnv 5699 | . . . . 5 class ◡(le‘𝑤) |
10 | 7, 9 | cop 4654 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
11 | csts 17210 | . . . 4 class sSet | |
12 | 4, 10, 11 | co 7448 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
13 | 2, 3, 12 | cmpt 5249 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
14 | 1, 13 | wceq 1537 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Colors of variables: wff setvar class |
This definition is referenced by: oduval 18358 |
Copyright terms: Public domain | W3C validator |