MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18193
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18197, oduleval 18195, and oduleg 18196 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18401. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18192 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3436 . . 3 class V
42cv 1539 . . . 4 class 𝑤
5 cnx 17104 . . . . . 6 class ndx
6 cple 17168 . . . . . 6 class le
75, 6cfv 6482 . . . . 5 class (le‘ndx)
84, 6cfv 6482 . . . . . 6 class (le‘𝑤)
98ccnv 5618 . . . . 5 class (le‘𝑤)
107, 9cop 4583 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 17074 . . . 4 class sSet
124, 10, 11co 7349 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5173 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1540 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18194
  Copyright terms: Public domain W3C validator