MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18357
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18361, oduleval 18359, and oduleg 18360 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18565. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18356 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3488 . . 3 class V
42cv 1536 . . . 4 class 𝑤
5 cnx 17240 . . . . . 6 class ndx
6 cple 17318 . . . . . 6 class le
75, 6cfv 6573 . . . . 5 class (le‘ndx)
84, 6cfv 6573 . . . . . 6 class (le‘𝑤)
98ccnv 5699 . . . . 5 class (le‘𝑤)
107, 9cop 4654 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 17210 . . . 4 class sSet
124, 10, 11co 7448 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5249 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1537 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18358
  Copyright terms: Public domain W3C validator