MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18239
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18243, oduleval 18241, and oduleg 18242 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18447. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18238 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3474 . . 3 class V
42cv 1540 . . . 4 class 𝑤
5 cnx 17125 . . . . . 6 class ndx
6 cple 17203 . . . . . 6 class le
75, 6cfv 6543 . . . . 5 class (le‘ndx)
84, 6cfv 6543 . . . . . 6 class (le‘𝑤)
98ccnv 5675 . . . . 5 class (le‘𝑤)
107, 9cop 4634 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 17095 . . . 4 class sSet
124, 10, 11co 7408 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5231 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1541 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18240
  Copyright terms: Public domain W3C validator