| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version | ||
| Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18252, oduleval 18250,
and oduleg 18251 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18454. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | codu 18247 | . 2 class ODual | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3447 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . 4 class 𝑤 |
| 5 | cnx 17163 | . . . . . 6 class ndx | |
| 6 | cple 17227 | . . . . . 6 class le | |
| 7 | 5, 6 | cfv 6511 | . . . . 5 class (le‘ndx) |
| 8 | 4, 6 | cfv 6511 | . . . . . 6 class (le‘𝑤) |
| 9 | 8 | ccnv 5637 | . . . . 5 class ◡(le‘𝑤) |
| 10 | 7, 9 | cop 4595 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
| 11 | csts 17133 | . . . 4 class sSet | |
| 12 | 4, 10, 11 | co 7387 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
| 13 | 2, 3, 12 | cmpt 5188 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| 14 | 1, 13 | wceq 1540 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: oduval 18249 |
| Copyright terms: Public domain | W3C validator |