MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18228
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18232, oduleval 18230, and oduleg 18231 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18436. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18227 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3444 . . 3 class V
42cv 1539 . . . 4 class 𝑤
5 cnx 17139 . . . . . 6 class ndx
6 cple 17203 . . . . . 6 class le
75, 6cfv 6499 . . . . 5 class (le‘ndx)
84, 6cfv 6499 . . . . . 6 class (le‘𝑤)
98ccnv 5630 . . . . 5 class (le‘𝑤)
107, 9cop 4591 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 17109 . . . 4 class sSet
124, 10, 11co 7369 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5183 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1540 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18229
  Copyright terms: Public domain W3C validator