MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 17986
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 17990, oduleval 17988, and oduleg 17989 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18194. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 17985 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3430 . . 3 class V
42cv 1540 . . . 4 class 𝑤
5 cnx 16875 . . . . . 6 class ndx
6 cple 16950 . . . . . 6 class le
75, 6cfv 6430 . . . . 5 class (le‘ndx)
84, 6cfv 6430 . . . . . 6 class (le‘𝑤)
98ccnv 5587 . . . . 5 class (le‘𝑤)
107, 9cop 4572 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 16845 . . . 4 class sSet
124, 10, 11co 7268 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5161 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1541 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  17987
  Copyright terms: Public domain W3C validator