| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version | ||
| Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 18308, oduleval 18306,
and oduleg 18307 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18510. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | codu 18303 | . 2 class ODual | |
| 2 | vw | . . 3 setvar 𝑤 | |
| 3 | cvv 3464 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . 4 class 𝑤 |
| 5 | cnx 17217 | . . . . . 6 class ndx | |
| 6 | cple 17283 | . . . . . 6 class le | |
| 7 | 5, 6 | cfv 6536 | . . . . 5 class (le‘ndx) |
| 8 | 4, 6 | cfv 6536 | . . . . . 6 class (le‘𝑤) |
| 9 | 8 | ccnv 5658 | . . . . 5 class ◡(le‘𝑤) |
| 10 | 7, 9 | cop 4612 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
| 11 | csts 17187 | . . . 4 class sSet | |
| 12 | 4, 10, 11 | co 7410 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
| 13 | 2, 3, 12 | cmpt 5206 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| 14 | 1, 13 | wceq 1540 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: oduval 18305 |
| Copyright terms: Public domain | W3C validator |