MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18304
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18308, oduleval 18306, and oduleg 18307 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18510. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18303 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3464 . . 3 class V
42cv 1539 . . . 4 class 𝑤
5 cnx 17217 . . . . . 6 class ndx
6 cple 17283 . . . . . 6 class le
75, 6cfv 6536 . . . . 5 class (le‘ndx)
84, 6cfv 6536 . . . . . 6 class (le‘𝑤)
98ccnv 5658 . . . . 5 class (le‘𝑤)
107, 9cop 4612 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 17187 . . . 4 class sSet
124, 10, 11co 7410 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5206 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1540 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18305
  Copyright terms: Public domain W3C validator