MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-odu Structured version   Visualization version   GIF version

Definition df-odu 18344
Description: Define the dual of an ordered structure, which replaces the order component of the structure with its reverse. See odubas 18348, oduleval 18346, and oduleg 18347 for its principal properties.

EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 18553. (Contributed by Stefan O'Rear, 29-Jan-2015.)

Assertion
Ref Expression
df-odu ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))

Detailed syntax breakdown of Definition df-odu
StepHypRef Expression
1 codu 18343 . 2 class ODual
2 vw . . 3 setvar 𝑤
3 cvv 3478 . . 3 class V
42cv 1536 . . . 4 class 𝑤
5 cnx 17227 . . . . . 6 class ndx
6 cple 17305 . . . . . 6 class le
75, 6cfv 6563 . . . . 5 class (le‘ndx)
84, 6cfv 6563 . . . . . 6 class (le‘𝑤)
98ccnv 5688 . . . . 5 class (le‘𝑤)
107, 9cop 4637 . . . 4 class ⟨(le‘ndx), (le‘𝑤)⟩
11 csts 17197 . . . 4 class sSet
124, 10, 11co 7431 . . 3 class (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩)
132, 3, 12cmpt 5231 . 2 class (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
141, 13wceq 1537 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
Colors of variables: wff setvar class
This definition is referenced by:  oduval  18345
  Copyright terms: Public domain W3C validator