Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-odu | Structured version Visualization version GIF version |
Description: Define the dual of an
ordered structure, which replaces the order
component of the structure with its reverse. See odubas 17859, oduleval 17857,
and oduleg 17858 for its principal properties.
EDITORIAL: likely usable to simplify many lattice proofs, as it allows for duality arguments to be formalized; for instance latmass 17914. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
df-odu | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | codu 17854 | . 2 class ODual | |
2 | vw | . . 3 setvar 𝑤 | |
3 | cvv 3398 | . . 3 class V | |
4 | 2 | cv 1541 | . . . 4 class 𝑤 |
5 | cnx 16583 | . . . . . 6 class ndx | |
6 | cple 16675 | . . . . . 6 class le | |
7 | 5, 6 | cfv 6339 | . . . . 5 class (le‘ndx) |
8 | 4, 6 | cfv 6339 | . . . . . 6 class (le‘𝑤) |
9 | 8 | ccnv 5524 | . . . . 5 class ◡(le‘𝑤) |
10 | 7, 9 | cop 4522 | . . . 4 class 〈(le‘ndx), ◡(le‘𝑤)〉 |
11 | csts 16584 | . . . 4 class sSet | |
12 | 4, 10, 11 | co 7170 | . . 3 class (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉) |
13 | 2, 3, 12 | cmpt 5110 | . 2 class (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
14 | 1, 13 | wceq 1542 | 1 wff ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
Colors of variables: wff setvar class |
This definition is referenced by: oduval 17856 |
Copyright terms: Public domain | W3C validator |