![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduleval | Structured version Visualization version GIF version |
Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduval.d | ⊢ 𝐷 = (ODual‘𝑂) |
oduval.l | ⊢ ≤ = (le‘𝑂) |
Ref | Expression |
---|---|
oduleval | ⊢ ◡ ≤ = (le‘𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6920 | . . . . 5 ⊢ (le‘𝑂) ∈ V | |
2 | 1 | cnvex 7948 | . . . 4 ⊢ ◡(le‘𝑂) ∈ V |
3 | pleid 17413 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
4 | 3 | setsid 17242 | . . . 4 ⊢ ((𝑂 ∈ V ∧ ◡(le‘𝑂) ∈ V) → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
5 | 2, 4 | mpan2 691 | . . 3 ⊢ (𝑂 ∈ V → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
6 | 3 | str0 17223 | . . . 4 ⊢ ∅ = (le‘∅) |
7 | fvprc 6899 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (le‘𝑂) = ∅) | |
8 | 7 | cnveqd 5889 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = ◡∅) |
9 | cnv0 6163 | . . . . 5 ⊢ ◡∅ = ∅ | |
10 | 8, 9 | eqtrdi 2791 | . . . 4 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = ∅) |
11 | reldmsets 17199 | . . . . . 6 ⊢ Rel dom sSet | |
12 | 11 | ovprc1 7470 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) = ∅) |
13 | 12 | fveq2d 6911 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) = (le‘∅)) |
14 | 6, 10, 13 | 3eqtr4a 2801 | . . 3 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
15 | 5, 14 | pm2.61i 182 | . 2 ⊢ ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
16 | oduval.l | . . 3 ⊢ ≤ = (le‘𝑂) | |
17 | 16 | cnveqi 5888 | . 2 ⊢ ◡ ≤ = ◡(le‘𝑂) |
18 | oduval.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
19 | eqid 2735 | . . . 4 ⊢ (le‘𝑂) = (le‘𝑂) | |
20 | 18, 19 | oduval 18345 | . . 3 ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
21 | 20 | fveq2i 6910 | . 2 ⊢ (le‘𝐷) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
22 | 15, 17, 21 | 3eqtr4i 2773 | 1 ⊢ ◡ ≤ = (le‘𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 〈cop 4637 ◡ccnv 5688 ‘cfv 6563 (class class class)co 7431 sSet csts 17197 ndxcnx 17227 lecple 17305 ODualcodu 18343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-dec 12732 df-sets 17198 df-slot 17216 df-ndx 17228 df-ple 17318 df-odu 18344 |
This theorem is referenced by: oduleg 18347 oduprs 18358 odupos 18386 oduposb 18387 odulub 18465 oduglb 18467 posglbdg 18473 odutos 32943 mgccnv 32974 ordtcnvNEW 33881 ordtrest2NEW 33884 glbprlem 48762 |
Copyright terms: Public domain | W3C validator |