| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oduleval | Structured version Visualization version GIF version | ||
| Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| oduval.d | ⊢ 𝐷 = (ODual‘𝑂) |
| oduval.l | ⊢ ≤ = (le‘𝑂) |
| Ref | Expression |
|---|---|
| oduleval | ⊢ ◡ ≤ = (le‘𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6874 | . . . . 5 ⊢ (le‘𝑂) ∈ V | |
| 2 | 1 | cnvex 7904 | . . . 4 ⊢ ◡(le‘𝑂) ∈ V |
| 3 | pleid 17337 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
| 4 | 3 | setsid 17184 | . . . 4 ⊢ ((𝑂 ∈ V ∧ ◡(le‘𝑂) ∈ V) → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
| 5 | 2, 4 | mpan2 691 | . . 3 ⊢ (𝑂 ∈ V → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
| 6 | 3 | str0 17166 | . . . 4 ⊢ ∅ = (le‘∅) |
| 7 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (le‘𝑂) = ∅) | |
| 8 | 7 | cnveqd 5842 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = ◡∅) |
| 9 | cnv0 6116 | . . . . 5 ⊢ ◡∅ = ∅ | |
| 10 | 8, 9 | eqtrdi 2781 | . . . 4 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = ∅) |
| 11 | reldmsets 17142 | . . . . . 6 ⊢ Rel dom sSet | |
| 12 | 11 | ovprc1 7429 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) = ∅) |
| 13 | 12 | fveq2d 6865 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) = (le‘∅)) |
| 14 | 6, 10, 13 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
| 15 | 5, 14 | pm2.61i 182 | . 2 ⊢ ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 16 | oduval.l | . . 3 ⊢ ≤ = (le‘𝑂) | |
| 17 | 16 | cnveqi 5841 | . 2 ⊢ ◡ ≤ = ◡(le‘𝑂) |
| 18 | oduval.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
| 19 | eqid 2730 | . . . 4 ⊢ (le‘𝑂) = (le‘𝑂) | |
| 20 | 18, 19 | oduval 18256 | . . 3 ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
| 21 | 20 | fveq2i 6864 | . 2 ⊢ (le‘𝐷) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 22 | 15, 17, 21 | 3eqtr4i 2763 | 1 ⊢ ◡ ≤ = (le‘𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 ◡ccnv 5640 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 lecple 17234 ODualcodu 18254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-ple 17247 df-odu 18255 |
| This theorem is referenced by: oduleg 18258 oduprs 18268 odupos 18294 oduposb 18295 odulub 18373 oduglb 18375 posglbdg 18381 odutos 32901 mgccnv 32932 ordtcnvNEW 33917 ordtrest2NEW 33920 glbprlem 48957 |
| Copyright terms: Public domain | W3C validator |