| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oduleval | Structured version Visualization version GIF version | ||
| Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| oduval.d | ⊢ 𝐷 = (ODual‘𝑂) |
| oduval.l | ⊢ ≤ = (le‘𝑂) |
| Ref | Expression |
|---|---|
| oduleval | ⊢ ◡ ≤ = (le‘𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6894 | . . . . 5 ⊢ (le‘𝑂) ∈ V | |
| 2 | 1 | cnvex 7926 | . . . 4 ⊢ ◡(le‘𝑂) ∈ V |
| 3 | pleid 17386 | . . . . 5 ⊢ le = Slot (le‘ndx) | |
| 4 | 3 | setsid 17231 | . . . 4 ⊢ ((𝑂 ∈ V ∧ ◡(le‘𝑂) ∈ V) → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
| 5 | 2, 4 | mpan2 691 | . . 3 ⊢ (𝑂 ∈ V → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
| 6 | 3 | str0 17213 | . . . 4 ⊢ ∅ = (le‘∅) |
| 7 | fvprc 6873 | . . . . . 6 ⊢ (¬ 𝑂 ∈ V → (le‘𝑂) = ∅) | |
| 8 | 7 | cnveqd 5860 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = ◡∅) |
| 9 | cnv0 6134 | . . . . 5 ⊢ ◡∅ = ∅ | |
| 10 | 8, 9 | eqtrdi 2787 | . . . 4 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = ∅) |
| 11 | reldmsets 17189 | . . . . . 6 ⊢ Rel dom sSet | |
| 12 | 11 | ovprc1 7449 | . . . . 5 ⊢ (¬ 𝑂 ∈ V → (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) = ∅) |
| 13 | 12 | fveq2d 6885 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) = (le‘∅)) |
| 14 | 6, 10, 13 | 3eqtr4a 2797 | . . 3 ⊢ (¬ 𝑂 ∈ V → ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉))) |
| 15 | 5, 14 | pm2.61i 182 | . 2 ⊢ ◡(le‘𝑂) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 16 | oduval.l | . . 3 ⊢ ≤ = (le‘𝑂) | |
| 17 | 16 | cnveqi 5859 | . 2 ⊢ ◡ ≤ = ◡(le‘𝑂) |
| 18 | oduval.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
| 19 | eqid 2736 | . . . 4 ⊢ (le‘𝑂) = (le‘𝑂) | |
| 20 | 18, 19 | oduval 18305 | . . 3 ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
| 21 | 20 | fveq2i 6884 | . 2 ⊢ (le‘𝐷) = (le‘(𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 22 | 15, 17, 21 | 3eqtr4i 2769 | 1 ⊢ ◡ ≤ = (le‘𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 〈cop 4612 ◡ccnv 5658 ‘cfv 6536 (class class class)co 7410 sSet csts 17187 ndxcnx 17217 lecple 17283 ODualcodu 18303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-ple 17296 df-odu 18304 |
| This theorem is referenced by: oduleg 18307 oduprs 18317 odupos 18343 oduposb 18344 odulub 18422 oduglb 18424 posglbdg 18430 odutos 32953 mgccnv 32984 ordtcnvNEW 33956 ordtrest2NEW 33959 glbprlem 48906 |
| Copyright terms: Public domain | W3C validator |