Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduleval Structured version   Visualization version   GIF version

Theorem oduleval 17733
 Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduval.d 𝐷 = (ODual‘𝑂)
oduval.l = (le‘𝑂)
Assertion
Ref Expression
oduleval = (le‘𝐷)

Proof of Theorem oduleval
StepHypRef Expression
1 fvex 6679 . . . . 5 (le‘𝑂) ∈ V
21cnvex 7621 . . . 4 (le‘𝑂) ∈ V
3 pleid 16659 . . . . 5 le = Slot (le‘ndx)
43setsid 16530 . . . 4 ((𝑂 ∈ V ∧ (le‘𝑂) ∈ V) → (le‘𝑂) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)))
52, 4mpan2 687 . . 3 (𝑂 ∈ V → (le‘𝑂) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)))
63str0 16527 . . . 4 ∅ = (le‘∅)
7 fvprc 6659 . . . . . 6 𝑂 ∈ V → (le‘𝑂) = ∅)
87cnveqd 5744 . . . . 5 𝑂 ∈ V → (le‘𝑂) = ∅)
9 cnv0 5996 . . . . 5 ∅ = ∅
108, 9syl6eq 2876 . . . 4 𝑂 ∈ V → (le‘𝑂) = ∅)
11 reldmsets 16503 . . . . . 6 Rel dom sSet
1211ovprc1 7190 . . . . 5 𝑂 ∈ V → (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩) = ∅)
1312fveq2d 6670 . . . 4 𝑂 ∈ V → (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)) = (le‘∅))
146, 10, 133eqtr4a 2886 . . 3 𝑂 ∈ V → (le‘𝑂) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)))
155, 14pm2.61i 183 . 2 (le‘𝑂) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
16 oduval.l . . 3 = (le‘𝑂)
1716cnveqi 5743 . 2 = (le‘𝑂)
18 oduval.d . . . 4 𝐷 = (ODual‘𝑂)
19 eqid 2825 . . . 4 (le‘𝑂) = (le‘𝑂)
2018, 19oduval 17732 . . 3 𝐷 = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)
2120fveq2i 6669 . 2 (le‘𝐷) = (le‘(𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
2215, 17, 213eqtr4i 2858 1 = (le‘𝐷)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1530   ∈ wcel 2107  Vcvv 3499  ∅c0 4294  ⟨cop 4569  ◡ccnv 5552  ‘cfv 6351  (class class class)co 7151  ndxcnx 16472   sSet csts 16473  lecple 16564  ODualcodu 17730 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-dec 12091  df-ndx 16478  df-slot 16479  df-sets 16482  df-ple 16577  df-odu 17731 This theorem is referenced by:  oduleg  17734  odupos  17737  oduposb  17738  oduglb  17741  odulub  17743  posglbd  17752  oduprs  30559  odutos  30566  ordtcnvNEW  31051  ordtrest2NEW  31054
 Copyright terms: Public domain W3C validator