![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduval | Structured version Visualization version GIF version |
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduval.d | β’ π· = (ODualβπ) |
oduval.l | β’ β€ = (leβπ) |
Ref | Expression |
---|---|
oduval | β’ π· = (π sSet β¨(leβndx), β‘ β€ β©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 β’ (π = π β π = π) | |
2 | fveq2 6892 | . . . . . . 7 β’ (π = π β (leβπ) = (leβπ)) | |
3 | 2 | cnveqd 5876 | . . . . . 6 β’ (π = π β β‘(leβπ) = β‘(leβπ)) |
4 | 3 | opeq2d 4881 | . . . . 5 β’ (π = π β β¨(leβndx), β‘(leβπ)β© = β¨(leβndx), β‘(leβπ)β©) |
5 | 1, 4 | oveq12d 7431 | . . . 4 β’ (π = π β (π sSet β¨(leβndx), β‘(leβπ)β©) = (π sSet β¨(leβndx), β‘(leβπ)β©)) |
6 | df-odu 18246 | . . . 4 β’ ODual = (π β V β¦ (π sSet β¨(leβndx), β‘(leβπ)β©)) | |
7 | ovex 7446 | . . . 4 β’ (π sSet β¨(leβndx), β‘(leβπ)β©) β V | |
8 | 5, 6, 7 | fvmpt 6999 | . . 3 β’ (π β V β (ODualβπ) = (π sSet β¨(leβndx), β‘(leβπ)β©)) |
9 | fvprc 6884 | . . . 4 β’ (Β¬ π β V β (ODualβπ) = β ) | |
10 | reldmsets 17104 | . . . . 5 β’ Rel dom sSet | |
11 | 10 | ovprc1 7452 | . . . 4 β’ (Β¬ π β V β (π sSet β¨(leβndx), β‘(leβπ)β©) = β ) |
12 | 9, 11 | eqtr4d 2773 | . . 3 β’ (Β¬ π β V β (ODualβπ) = (π sSet β¨(leβndx), β‘(leβπ)β©)) |
13 | 8, 12 | pm2.61i 182 | . 2 β’ (ODualβπ) = (π sSet β¨(leβndx), β‘(leβπ)β©) |
14 | oduval.d | . 2 β’ π· = (ODualβπ) | |
15 | oduval.l | . . . . 5 β’ β€ = (leβπ) | |
16 | 15 | cnveqi 5875 | . . . 4 β’ β‘ β€ = β‘(leβπ) |
17 | 16 | opeq2i 4878 | . . 3 β’ β¨(leβndx), β‘ β€ β© = β¨(leβndx), β‘(leβπ)β© |
18 | 17 | oveq2i 7424 | . 2 β’ (π sSet β¨(leβndx), β‘ β€ β©) = (π sSet β¨(leβndx), β‘(leβπ)β©) |
19 | 13, 14, 18 | 3eqtr4i 2768 | 1 β’ π· = (π sSet β¨(leβndx), β‘ β€ β©) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1539 β wcel 2104 Vcvv 3472 β c0 4323 β¨cop 4635 β‘ccnv 5676 βcfv 6544 (class class class)co 7413 sSet csts 17102 ndxcnx 17132 lecple 17210 ODualcodu 18245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-sets 17103 df-odu 18246 |
This theorem is referenced by: oduleval 18248 odubas 18250 odubasOLD 18251 |
Copyright terms: Public domain | W3C validator |