| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oduval | Structured version Visualization version GIF version | ||
| Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| oduval.d | ⊢ 𝐷 = (ODual‘𝑂) |
| oduval.l | ⊢ ≤ = (le‘𝑂) |
| Ref | Expression |
|---|---|
| oduval | ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ (𝑎 = 𝑂 → 𝑎 = 𝑂) | |
| 2 | fveq2 6881 | . . . . . . 7 ⊢ (𝑎 = 𝑂 → (le‘𝑎) = (le‘𝑂)) | |
| 3 | 2 | cnveqd 5860 | . . . . . 6 ⊢ (𝑎 = 𝑂 → ◡(le‘𝑎) = ◡(le‘𝑂)) |
| 4 | 3 | opeq2d 4861 | . . . . 5 ⊢ (𝑎 = 𝑂 → 〈(le‘ndx), ◡(le‘𝑎)〉 = 〈(le‘ndx), ◡(le‘𝑂)〉) |
| 5 | 1, 4 | oveq12d 7428 | . . . 4 ⊢ (𝑎 = 𝑂 → (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 6 | df-odu 18304 | . . . 4 ⊢ ODual = (𝑎 ∈ V ↦ (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉)) | |
| 7 | ovex 7443 | . . . 4 ⊢ (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6991 | . . 3 ⊢ (𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 9 | fvprc 6873 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
| 10 | reldmsets 17189 | . . . . 5 ⊢ Rel dom sSet | |
| 11 | 10 | ovprc1 7449 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) = ∅) |
| 12 | 9, 11 | eqtr4d 2774 | . . 3 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 13 | 8, 12 | pm2.61i 182 | . 2 ⊢ (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
| 14 | oduval.d | . 2 ⊢ 𝐷 = (ODual‘𝑂) | |
| 15 | oduval.l | . . . . 5 ⊢ ≤ = (le‘𝑂) | |
| 16 | 15 | cnveqi 5859 | . . . 4 ⊢ ◡ ≤ = ◡(le‘𝑂) |
| 17 | 16 | opeq2i 4858 | . . 3 ⊢ 〈(le‘ndx), ◡ ≤ 〉 = 〈(le‘ndx), ◡(le‘𝑂)〉 |
| 18 | 17 | oveq2i 7421 | . 2 ⊢ (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
| 19 | 13, 14, 18 | 3eqtr4i 2769 | 1 ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 〈cop 4612 ◡ccnv 5658 ‘cfv 6536 (class class class)co 7410 sSet csts 17187 ndxcnx 17217 lecple 17283 ODualcodu 18303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-sets 17188 df-odu 18304 |
| This theorem is referenced by: oduleval 18306 odubas 18308 |
| Copyright terms: Public domain | W3C validator |