| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oduval | Structured version Visualization version GIF version | ||
| Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| oduval.d | ⊢ 𝐷 = (ODual‘𝑂) |
| oduval.l | ⊢ ≤ = (le‘𝑂) |
| Ref | Expression |
|---|---|
| oduval | ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ (𝑎 = 𝑂 → 𝑎 = 𝑂) | |
| 2 | fveq2 6822 | . . . . . . 7 ⊢ (𝑎 = 𝑂 → (le‘𝑎) = (le‘𝑂)) | |
| 3 | 2 | cnveqd 5814 | . . . . . 6 ⊢ (𝑎 = 𝑂 → ◡(le‘𝑎) = ◡(le‘𝑂)) |
| 4 | 3 | opeq2d 4829 | . . . . 5 ⊢ (𝑎 = 𝑂 → 〈(le‘ndx), ◡(le‘𝑎)〉 = 〈(le‘ndx), ◡(le‘𝑂)〉) |
| 5 | 1, 4 | oveq12d 7364 | . . . 4 ⊢ (𝑎 = 𝑂 → (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 6 | df-odu 18193 | . . . 4 ⊢ ODual = (𝑎 ∈ V ↦ (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉)) | |
| 7 | ovex 7379 | . . . 4 ⊢ (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6929 | . . 3 ⊢ (𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 9 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
| 10 | reldmsets 17076 | . . . . 5 ⊢ Rel dom sSet | |
| 11 | 10 | ovprc1 7385 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) = ∅) |
| 12 | 9, 11 | eqtr4d 2769 | . . 3 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
| 13 | 8, 12 | pm2.61i 182 | . 2 ⊢ (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
| 14 | oduval.d | . 2 ⊢ 𝐷 = (ODual‘𝑂) | |
| 15 | oduval.l | . . . . 5 ⊢ ≤ = (le‘𝑂) | |
| 16 | 15 | cnveqi 5813 | . . . 4 ⊢ ◡ ≤ = ◡(le‘𝑂) |
| 17 | 16 | opeq2i 4826 | . . 3 ⊢ 〈(le‘ndx), ◡ ≤ 〉 = 〈(le‘ndx), ◡(le‘𝑂)〉 |
| 18 | 17 | oveq2i 7357 | . 2 ⊢ (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
| 19 | 13, 14, 18 | 3eqtr4i 2764 | 1 ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 〈cop 4579 ◡ccnv 5613 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 ndxcnx 17104 lecple 17168 ODualcodu 18192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-sets 17075 df-odu 18193 |
| This theorem is referenced by: oduleval 18195 odubas 18197 |
| Copyright terms: Public domain | W3C validator |