![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduval | Structured version Visualization version GIF version |
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduval.d | ⊢ 𝐷 = (ODual‘𝑂) |
oduval.l | ⊢ ≤ = (le‘𝑂) |
Ref | Expression |
---|---|
oduval | ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑎 = 𝑂 → 𝑎 = 𝑂) | |
2 | fveq2 6920 | . . . . . . 7 ⊢ (𝑎 = 𝑂 → (le‘𝑎) = (le‘𝑂)) | |
3 | 2 | cnveqd 5900 | . . . . . 6 ⊢ (𝑎 = 𝑂 → ◡(le‘𝑎) = ◡(le‘𝑂)) |
4 | 3 | opeq2d 4904 | . . . . 5 ⊢ (𝑎 = 𝑂 → 〈(le‘ndx), ◡(le‘𝑎)〉 = 〈(le‘ndx), ◡(le‘𝑂)〉) |
5 | 1, 4 | oveq12d 7466 | . . . 4 ⊢ (𝑎 = 𝑂 → (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
6 | df-odu 18357 | . . . 4 ⊢ ODual = (𝑎 ∈ V ↦ (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉)) | |
7 | ovex 7481 | . . . 4 ⊢ (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) ∈ V | |
8 | 5, 6, 7 | fvmpt 7029 | . . 3 ⊢ (𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
9 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
10 | reldmsets 17212 | . . . . 5 ⊢ Rel dom sSet | |
11 | 10 | ovprc1 7487 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) = ∅) |
12 | 9, 11 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
13 | 8, 12 | pm2.61i 182 | . 2 ⊢ (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
14 | oduval.d | . 2 ⊢ 𝐷 = (ODual‘𝑂) | |
15 | oduval.l | . . . . 5 ⊢ ≤ = (le‘𝑂) | |
16 | 15 | cnveqi 5899 | . . . 4 ⊢ ◡ ≤ = ◡(le‘𝑂) |
17 | 16 | opeq2i 4901 | . . 3 ⊢ 〈(le‘ndx), ◡ ≤ 〉 = 〈(le‘ndx), ◡(le‘𝑂)〉 |
18 | 17 | oveq2i 7459 | . 2 ⊢ (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
19 | 13, 14, 18 | 3eqtr4i 2778 | 1 ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ◡ccnv 5699 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 ndxcnx 17240 lecple 17318 ODualcodu 18356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sets 17211 df-odu 18357 |
This theorem is referenced by: oduleval 18359 odubas 18361 odubasOLD 18362 |
Copyright terms: Public domain | W3C validator |