MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduval Structured version   Visualization version   GIF version

Theorem oduval 18247
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduval.d 𝐷 = (ODualβ€˜π‘‚)
oduval.l ≀ = (leβ€˜π‘‚)
Assertion
Ref Expression
oduval 𝐷 = (𝑂 sSet ⟨(leβ€˜ndx), β—‘ ≀ ⟩)

Proof of Theorem oduval
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (π‘Ž = 𝑂 β†’ π‘Ž = 𝑂)
2 fveq2 6892 . . . . . . 7 (π‘Ž = 𝑂 β†’ (leβ€˜π‘Ž) = (leβ€˜π‘‚))
32cnveqd 5876 . . . . . 6 (π‘Ž = 𝑂 β†’ β—‘(leβ€˜π‘Ž) = β—‘(leβ€˜π‘‚))
43opeq2d 4881 . . . . 5 (π‘Ž = 𝑂 β†’ ⟨(leβ€˜ndx), β—‘(leβ€˜π‘Ž)⟩ = ⟨(leβ€˜ndx), β—‘(leβ€˜π‘‚)⟩)
51, 4oveq12d 7431 . . . 4 (π‘Ž = 𝑂 β†’ (π‘Ž sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘Ž)⟩) = (𝑂 sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘‚)⟩))
6 df-odu 18246 . . . 4 ODual = (π‘Ž ∈ V ↦ (π‘Ž sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘Ž)⟩))
7 ovex 7446 . . . 4 (𝑂 sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘‚)⟩) ∈ V
85, 6, 7fvmpt 6999 . . 3 (𝑂 ∈ V β†’ (ODualβ€˜π‘‚) = (𝑂 sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘‚)⟩))
9 fvprc 6884 . . . 4 (Β¬ 𝑂 ∈ V β†’ (ODualβ€˜π‘‚) = βˆ…)
10 reldmsets 17104 . . . . 5 Rel dom sSet
1110ovprc1 7452 . . . 4 (Β¬ 𝑂 ∈ V β†’ (𝑂 sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘‚)⟩) = βˆ…)
129, 11eqtr4d 2773 . . 3 (Β¬ 𝑂 ∈ V β†’ (ODualβ€˜π‘‚) = (𝑂 sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘‚)⟩))
138, 12pm2.61i 182 . 2 (ODualβ€˜π‘‚) = (𝑂 sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘‚)⟩)
14 oduval.d . 2 𝐷 = (ODualβ€˜π‘‚)
15 oduval.l . . . . 5 ≀ = (leβ€˜π‘‚)
1615cnveqi 5875 . . . 4 β—‘ ≀ = β—‘(leβ€˜π‘‚)
1716opeq2i 4878 . . 3 ⟨(leβ€˜ndx), β—‘ ≀ ⟩ = ⟨(leβ€˜ndx), β—‘(leβ€˜π‘‚)⟩
1817oveq2i 7424 . 2 (𝑂 sSet ⟨(leβ€˜ndx), β—‘ ≀ ⟩) = (𝑂 sSet ⟨(leβ€˜ndx), β—‘(leβ€˜π‘‚)⟩)
1913, 14, 183eqtr4i 2768 1 𝐷 = (𝑂 sSet ⟨(leβ€˜ndx), β—‘ ≀ ⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1539   ∈ wcel 2104  Vcvv 3472  βˆ…c0 4323  βŸ¨cop 4635  β—‘ccnv 5676  β€˜cfv 6544  (class class class)co 7413   sSet csts 17102  ndxcnx 17132  lecple 17210  ODualcodu 18245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-sets 17103  df-odu 18246
This theorem is referenced by:  oduleval  18248  odubas  18250  odubasOLD  18251
  Copyright terms: Public domain W3C validator