![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oduval | Structured version Visualization version GIF version |
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
oduval.d | ⊢ 𝐷 = (ODual‘𝑂) |
oduval.l | ⊢ ≤ = (le‘𝑂) |
Ref | Expression |
---|---|
oduval | ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑎 = 𝑂 → 𝑎 = 𝑂) | |
2 | fveq2 6891 | . . . . . . 7 ⊢ (𝑎 = 𝑂 → (le‘𝑎) = (le‘𝑂)) | |
3 | 2 | cnveqd 5875 | . . . . . 6 ⊢ (𝑎 = 𝑂 → ◡(le‘𝑎) = ◡(le‘𝑂)) |
4 | 3 | opeq2d 4880 | . . . . 5 ⊢ (𝑎 = 𝑂 → 〈(le‘ndx), ◡(le‘𝑎)〉 = 〈(le‘ndx), ◡(le‘𝑂)〉) |
5 | 1, 4 | oveq12d 7430 | . . . 4 ⊢ (𝑎 = 𝑂 → (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
6 | df-odu 18247 | . . . 4 ⊢ ODual = (𝑎 ∈ V ↦ (𝑎 sSet 〈(le‘ndx), ◡(le‘𝑎)〉)) | |
7 | ovex 7445 | . . . 4 ⊢ (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) ∈ V | |
8 | 5, 6, 7 | fvmpt 6998 | . . 3 ⊢ (𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
9 | fvprc 6883 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = ∅) | |
10 | reldmsets 17105 | . . . . 5 ⊢ Rel dom sSet | |
11 | 10 | ovprc1 7451 | . . . 4 ⊢ (¬ 𝑂 ∈ V → (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) = ∅) |
12 | 9, 11 | eqtr4d 2774 | . . 3 ⊢ (¬ 𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉)) |
13 | 8, 12 | pm2.61i 182 | . 2 ⊢ (ODual‘𝑂) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
14 | oduval.d | . 2 ⊢ 𝐷 = (ODual‘𝑂) | |
15 | oduval.l | . . . . 5 ⊢ ≤ = (le‘𝑂) | |
16 | 15 | cnveqi 5874 | . . . 4 ⊢ ◡ ≤ = ◡(le‘𝑂) |
17 | 16 | opeq2i 4877 | . . 3 ⊢ 〈(le‘ndx), ◡ ≤ 〉 = 〈(le‘ndx), ◡(le‘𝑂)〉 |
18 | 17 | oveq2i 7423 | . 2 ⊢ (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) = (𝑂 sSet 〈(le‘ndx), ◡(le‘𝑂)〉) |
19 | 13, 14, 18 | 3eqtr4i 2769 | 1 ⊢ 𝐷 = (𝑂 sSet 〈(le‘ndx), ◡ ≤ 〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 〈cop 4634 ◡ccnv 5675 ‘cfv 6543 (class class class)co 7412 sSet csts 17103 ndxcnx 17133 lecple 17211 ODualcodu 18246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-sets 17104 df-odu 18247 |
This theorem is referenced by: oduleval 18249 odubas 18251 odubasOLD 18252 |
Copyright terms: Public domain | W3C validator |