MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduval Structured version   Visualization version   GIF version

Theorem oduval 18006
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduval.d 𝐷 = (ODual‘𝑂)
oduval.l = (le‘𝑂)
Assertion
Ref Expression
oduval 𝐷 = (𝑂 sSet ⟨(le‘ndx), ⟩)

Proof of Theorem oduval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑎 = 𝑂𝑎 = 𝑂)
2 fveq2 6774 . . . . . . 7 (𝑎 = 𝑂 → (le‘𝑎) = (le‘𝑂))
32cnveqd 5784 . . . . . 6 (𝑎 = 𝑂(le‘𝑎) = (le‘𝑂))
43opeq2d 4811 . . . . 5 (𝑎 = 𝑂 → ⟨(le‘ndx), (le‘𝑎)⟩ = ⟨(le‘ndx), (le‘𝑂)⟩)
51, 4oveq12d 7293 . . . 4 (𝑎 = 𝑂 → (𝑎 sSet ⟨(le‘ndx), (le‘𝑎)⟩) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
6 df-odu 18005 . . . 4 ODual = (𝑎 ∈ V ↦ (𝑎 sSet ⟨(le‘ndx), (le‘𝑎)⟩))
7 ovex 7308 . . . 4 (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩) ∈ V
85, 6, 7fvmpt 6875 . . 3 (𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
9 fvprc 6766 . . . 4 𝑂 ∈ V → (ODual‘𝑂) = ∅)
10 reldmsets 16866 . . . . 5 Rel dom sSet
1110ovprc1 7314 . . . 4 𝑂 ∈ V → (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩) = ∅)
129, 11eqtr4d 2781 . . 3 𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
138, 12pm2.61i 182 . 2 (ODual‘𝑂) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)
14 oduval.d . 2 𝐷 = (ODual‘𝑂)
15 oduval.l . . . . 5 = (le‘𝑂)
1615cnveqi 5783 . . . 4 = (le‘𝑂)
1716opeq2i 4808 . . 3 ⟨(le‘ndx), ⟩ = ⟨(le‘ndx), (le‘𝑂)⟩
1817oveq2i 7286 . 2 (𝑂 sSet ⟨(le‘ndx), ⟩) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)
1913, 14, 183eqtr4i 2776 1 𝐷 = (𝑂 sSet ⟨(le‘ndx), ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cop 4567  ccnv 5588  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  lecple 16969  ODualcodu 18004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-sets 16865  df-odu 18005
This theorem is referenced by:  oduleval  18007  odubas  18009  odubasOLD  18010
  Copyright terms: Public domain W3C validator