MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduval Structured version   Visualization version   GIF version

Theorem oduval 18333
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduval.d 𝐷 = (ODual‘𝑂)
oduval.l = (le‘𝑂)
Assertion
Ref Expression
oduval 𝐷 = (𝑂 sSet ⟨(le‘ndx), ⟩)

Proof of Theorem oduval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑎 = 𝑂𝑎 = 𝑂)
2 fveq2 6906 . . . . . . 7 (𝑎 = 𝑂 → (le‘𝑎) = (le‘𝑂))
32cnveqd 5886 . . . . . 6 (𝑎 = 𝑂(le‘𝑎) = (le‘𝑂))
43opeq2d 4880 . . . . 5 (𝑎 = 𝑂 → ⟨(le‘ndx), (le‘𝑎)⟩ = ⟨(le‘ndx), (le‘𝑂)⟩)
51, 4oveq12d 7449 . . . 4 (𝑎 = 𝑂 → (𝑎 sSet ⟨(le‘ndx), (le‘𝑎)⟩) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
6 df-odu 18332 . . . 4 ODual = (𝑎 ∈ V ↦ (𝑎 sSet ⟨(le‘ndx), (le‘𝑎)⟩))
7 ovex 7464 . . . 4 (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩) ∈ V
85, 6, 7fvmpt 7016 . . 3 (𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
9 fvprc 6898 . . . 4 𝑂 ∈ V → (ODual‘𝑂) = ∅)
10 reldmsets 17202 . . . . 5 Rel dom sSet
1110ovprc1 7470 . . . 4 𝑂 ∈ V → (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩) = ∅)
129, 11eqtr4d 2780 . . 3 𝑂 ∈ V → (ODual‘𝑂) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
138, 12pm2.61i 182 . 2 (ODual‘𝑂) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)
14 oduval.d . 2 𝐷 = (ODual‘𝑂)
15 oduval.l . . . . 5 = (le‘𝑂)
1615cnveqi 5885 . . . 4 = (le‘𝑂)
1716opeq2i 4877 . . 3 ⟨(le‘ndx), ⟩ = ⟨(le‘ndx), (le‘𝑂)⟩
1817oveq2i 7442 . 2 (𝑂 sSet ⟨(le‘ndx), ⟩) = (𝑂 sSet ⟨(le‘ndx), (le‘𝑂)⟩)
1913, 14, 183eqtr4i 2775 1 𝐷 = (𝑂 sSet ⟨(le‘ndx), ⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333  cop 4632  ccnv 5684  cfv 6561  (class class class)co 7431   sSet csts 17200  ndxcnx 17230  lecple 17304  ODualcodu 18331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-sets 17201  df-odu 18332
This theorem is referenced by:  oduleval  18334  odubas  18336  odubasOLD  18337
  Copyright terms: Public domain W3C validator