| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-ofc | Structured version Visualization version GIF version | ||
| Description: Define the function/constant operation map. The definition is designed so that if 𝑅 is a binary operation, then ∘f/c 𝑅 is the analogous operation on functions and constants. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-ofc | ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | cofc 34096 | . 2 class ∘f/c 𝑅 |
| 3 | vf | . . 3 setvar 𝑓 | |
| 4 | vc | . . 3 setvar 𝑐 | |
| 5 | cvv 3480 | . . 3 class V | |
| 6 | vx | . . . 4 setvar 𝑥 | |
| 7 | 3 | cv 1539 | . . . . 5 class 𝑓 |
| 8 | 7 | cdm 5685 | . . . 4 class dom 𝑓 |
| 9 | 6 | cv 1539 | . . . . . 6 class 𝑥 |
| 10 | 9, 7 | cfv 6561 | . . . . 5 class (𝑓‘𝑥) |
| 11 | 4 | cv 1539 | . . . . 5 class 𝑐 |
| 12 | 10, 11, 1 | co 7431 | . . . 4 class ((𝑓‘𝑥)𝑅𝑐) |
| 13 | 6, 8, 12 | cmpt 5225 | . . 3 class (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) |
| 14 | 3, 4, 5, 5, 13 | cmpo 7433 | . 2 class (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) |
| 15 | 2, 14 | wceq 1540 | 1 wff ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ofceq 34098 ofcfval 34099 ofcfval3 34103 |
| Copyright terms: Public domain | W3C validator |