Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval Structured version   Visualization version   GIF version

Theorem ofcfval 34095
Description: Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
ofcfval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
ofcfval (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval
Dummy variables 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofc 34093 . . . 4 f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)))
21a1i 11 . . 3 (𝜑 → ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐))))
3 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → 𝑓 = 𝐹)
43dmeqd 5872 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → dom 𝑓 = dom 𝐹)
53fveq1d 6863 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → (𝑓𝑥) = (𝐹𝑥))
6 simprr 772 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → 𝑐 = 𝐶)
75, 6oveq12d 7408 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → ((𝑓𝑥)𝑅𝑐) = ((𝐹𝑥)𝑅𝐶))
84, 7mpteq12dv 5197 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
9 ofcfval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
10 ofcfval.2 . . . 4 (𝜑𝐴𝑉)
11 fnex 7194 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
129, 10, 11syl2anc 584 . . 3 (𝜑𝐹 ∈ V)
13 ofcfval.3 . . . 4 (𝜑𝐶𝑊)
1413elexd 3474 . . 3 (𝜑𝐶 ∈ V)
159fndmd 6626 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
1615, 10eqeltrd 2829 . . . 4 (𝜑 → dom 𝐹𝑉)
1716mptexd 7201 . . 3 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V)
182, 8, 12, 14, 17ovmpod 7544 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
1915eleq2d 2815 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
2019pm5.32i 574 . . . . 5 ((𝜑𝑥 ∈ dom 𝐹) ↔ (𝜑𝑥𝐴))
21 ofcfval.6 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
2220, 21sylbi 217 . . . 4 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = 𝐵)
2322oveq1d 7405 . . 3 ((𝜑𝑥 ∈ dom 𝐹) → ((𝐹𝑥)𝑅𝐶) = (𝐵𝑅𝐶))
2415, 23mpteq12dva 5196 . 2 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
2518, 24eqtrd 2765 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  dom cdm 5641   Fn wfn 6509  cfv 6514  (class class class)co 7390  cmpo 7392  f/c cofc 34092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-ofc 34093
This theorem is referenced by:  ofcval  34096  ofcfn  34097  ofcfeqd2  34098  ofcf  34100  ofcfval2  34101  ofcc  34103  ofcof  34104
  Copyright terms: Public domain W3C validator