Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval Structured version   Visualization version   GIF version

Theorem ofcfval 33091
Description: Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
ofcfval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
ofcfval (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval
Dummy variables 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofc 33089 . . . 4 f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)))
21a1i 11 . . 3 (𝜑 → ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐))))
3 simprl 769 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → 𝑓 = 𝐹)
43dmeqd 5905 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → dom 𝑓 = dom 𝐹)
53fveq1d 6893 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → (𝑓𝑥) = (𝐹𝑥))
6 simprr 771 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → 𝑐 = 𝐶)
75, 6oveq12d 7426 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → ((𝑓𝑥)𝑅𝑐) = ((𝐹𝑥)𝑅𝐶))
84, 7mpteq12dv 5239 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
9 ofcfval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
10 ofcfval.2 . . . 4 (𝜑𝐴𝑉)
11 fnex 7218 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
129, 10, 11syl2anc 584 . . 3 (𝜑𝐹 ∈ V)
13 ofcfval.3 . . . 4 (𝜑𝐶𝑊)
1413elexd 3494 . . 3 (𝜑𝐶 ∈ V)
159fndmd 6654 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
1615, 10eqeltrd 2833 . . . 4 (𝜑 → dom 𝐹𝑉)
1716mptexd 7225 . . 3 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V)
182, 8, 12, 14, 17ovmpod 7559 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
1915eleq2d 2819 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
2019pm5.32i 575 . . . . 5 ((𝜑𝑥 ∈ dom 𝐹) ↔ (𝜑𝑥𝐴))
21 ofcfval.6 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
2220, 21sylbi 216 . . . 4 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = 𝐵)
2322oveq1d 7423 . . 3 ((𝜑𝑥 ∈ dom 𝐹) → ((𝐹𝑥)𝑅𝐶) = (𝐵𝑅𝐶))
2415, 23mpteq12dva 5237 . 2 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
2518, 24eqtrd 2772 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cmpt 5231  dom cdm 5676   Fn wfn 6538  cfv 6543  (class class class)co 7408  cmpo 7410  f/c cofc 33088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-ofc 33089
This theorem is referenced by:  ofcval  33092  ofcfn  33093  ofcfeqd2  33094  ofcf  33096  ofcfval2  33097  ofcc  33099  ofcof  33100
  Copyright terms: Public domain W3C validator