![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval | Structured version Visualization version GIF version |
Description: Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
ofcfval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
Ref | Expression |
---|---|
ofcfval | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofc 33623 | . . . 4 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)))) |
3 | simprl 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → 𝑓 = 𝐹) | |
4 | 3 | dmeqd 5898 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → dom 𝑓 = dom 𝐹) |
5 | 3 | fveq1d 6886 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
6 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → 𝑐 = 𝐶) | |
7 | 5, 6 | oveq12d 7422 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → ((𝑓‘𝑥)𝑅𝑐) = ((𝐹‘𝑥)𝑅𝐶)) |
8 | 4, 7 | mpteq12dv 5232 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
9 | ofcfval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
10 | ofcfval.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | fnex 7213 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
12 | 9, 10, 11 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
13 | ofcfval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
14 | 13 | elexd 3489 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
15 | 9 | fndmd 6647 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
16 | 15, 10 | eqeltrd 2827 | . . . 4 ⊢ (𝜑 → dom 𝐹 ∈ 𝑉) |
17 | 16 | mptexd 7220 | . . 3 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
18 | 2, 8, 12, 14, 17 | ovmpod 7555 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
19 | 15 | eleq2d 2813 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
20 | 19 | pm5.32i 574 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) ↔ (𝜑 ∧ 𝑥 ∈ 𝐴)) |
21 | ofcfval.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
22 | 20, 21 | sylbi 216 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = 𝐵) |
23 | 22 | oveq1d 7419 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥)𝑅𝐶) = (𝐵𝑅𝐶)) |
24 | 15, 23 | mpteq12dva 5230 | . 2 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
25 | 18, 24 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ↦ cmpt 5224 dom cdm 5669 Fn wfn 6531 ‘cfv 6536 (class class class)co 7404 ∈ cmpo 7406 ∘f/c cofc 33622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-ofc 33623 |
This theorem is referenced by: ofcval 33626 ofcfn 33627 ofcfeqd2 33628 ofcf 33630 ofcfval2 33631 ofcc 33633 ofcof 33634 |
Copyright terms: Public domain | W3C validator |