Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval Structured version   Visualization version   GIF version

Theorem ofcfval 34106
Description: Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
ofcfval.6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Assertion
Ref Expression
ofcfval (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval
Dummy variables 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofc 34104 . . . 4 f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)))
21a1i 11 . . 3 (𝜑 → ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐))))
3 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → 𝑓 = 𝐹)
43dmeqd 5845 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → dom 𝑓 = dom 𝐹)
53fveq1d 6824 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → (𝑓𝑥) = (𝐹𝑥))
6 simprr 772 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → 𝑐 = 𝐶)
75, 6oveq12d 7364 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → ((𝑓𝑥)𝑅𝑐) = ((𝐹𝑥)𝑅𝐶))
84, 7mpteq12dv 5178 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑐 = 𝐶)) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
9 ofcfval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
10 ofcfval.2 . . . 4 (𝜑𝐴𝑉)
11 fnex 7151 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
129, 10, 11syl2anc 584 . . 3 (𝜑𝐹 ∈ V)
13 ofcfval.3 . . . 4 (𝜑𝐶𝑊)
1413elexd 3460 . . 3 (𝜑𝐶 ∈ V)
159fndmd 6586 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
1615, 10eqeltrd 2831 . . . 4 (𝜑 → dom 𝐹𝑉)
1716mptexd 7158 . . 3 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V)
182, 8, 12, 14, 17ovmpod 7498 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
1915eleq2d 2817 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝐴))
2019pm5.32i 574 . . . . 5 ((𝜑𝑥 ∈ dom 𝐹) ↔ (𝜑𝑥𝐴))
21 ofcfval.6 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
2220, 21sylbi 217 . . . 4 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = 𝐵)
2322oveq1d 7361 . . 3 ((𝜑𝑥 ∈ dom 𝐹) → ((𝐹𝑥)𝑅𝐶) = (𝐵𝑅𝐶))
2415, 23mpteq12dva 5177 . 2 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
2518, 24eqtrd 2766 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5172  dom cdm 5616   Fn wfn 6476  cfv 6481  (class class class)co 7346  cmpo 7348  f/c cofc 34103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-ofc 34104
This theorem is referenced by:  ofcval  34107  ofcfn  34108  ofcfeqd2  34109  ofcf  34111  ofcfval2  34112  ofcc  34114  ofcof  34115
  Copyright terms: Public domain W3C validator