Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval | Structured version Visualization version GIF version |
Description: Value of an operation applied to a function and a constant. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
ofcfval.6 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
Ref | Expression |
---|---|
ofcfval | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofc 31964 | . . . 4 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)))) |
3 | simprl 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → 𝑓 = 𝐹) | |
4 | 3 | dmeqd 5803 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → dom 𝑓 = dom 𝐹) |
5 | 3 | fveq1d 6758 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
6 | simprr 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → 𝑐 = 𝐶) | |
7 | 5, 6 | oveq12d 7273 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → ((𝑓‘𝑥)𝑅𝑐) = ((𝐹‘𝑥)𝑅𝐶)) |
8 | 4, 7 | mpteq12dv 5161 | . . 3 ⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑐 = 𝐶)) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
9 | ofcfval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
10 | ofcfval.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
11 | fnex 7075 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
12 | 9, 10, 11 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
13 | ofcfval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
14 | 13 | elexd 3442 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
15 | 9 | fndmd 6522 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
16 | 15, 10 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → dom 𝐹 ∈ 𝑉) |
17 | 16 | mptexd 7082 | . . 3 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
18 | 2, 8, 12, 14, 17 | ovmpod 7403 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
19 | 15 | eleq2d 2824 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
20 | 19 | pm5.32i 574 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) ↔ (𝜑 ∧ 𝑥 ∈ 𝐴)) |
21 | ofcfval.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) | |
22 | 20, 21 | sylbi 216 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = 𝐵) |
23 | 22 | oveq1d 7270 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥)𝑅𝐶) = (𝐵𝑅𝐶)) |
24 | 15, 23 | mpteq12dva 5159 | . 2 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
25 | 18, 24 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 dom cdm 5580 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ∘f/c cofc 31963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-ofc 31964 |
This theorem is referenced by: ofcval 31967 ofcfn 31968 ofcfeqd2 31969 ofcf 31971 ofcfval2 31972 ofcc 31974 ofcof 31975 |
Copyright terms: Public domain | W3C validator |