Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval3 Structured version   Visualization version   GIF version

Theorem ofcfval3 32111
Description: General value of (𝐹f/c 𝑅𝐶) with no assumptions on functionality of 𝐹. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
ofcfval3 ((𝐹𝑉𝐶𝑊) → (𝐹f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval3
Dummy variables 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3455 . . 3 (𝐹𝑉𝐹 ∈ V)
21adantr 482 . 2 ((𝐹𝑉𝐶𝑊) → 𝐹 ∈ V)
3 elex 3455 . . 3 (𝐶𝑊𝐶 ∈ V)
43adantl 483 . 2 ((𝐹𝑉𝐶𝑊) → 𝐶 ∈ V)
5 dmexg 7778 . . . 4 (𝐹𝑉 → dom 𝐹 ∈ V)
6 mptexg 7125 . . . 4 (dom 𝐹 ∈ V → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V)
75, 6syl 17 . . 3 (𝐹𝑉 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V)
87adantr 482 . 2 ((𝐹𝑉𝐶𝑊) → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V)
9 simpl 484 . . . . 5 ((𝑓 = 𝐹𝑐 = 𝐶) → 𝑓 = 𝐹)
109dmeqd 5823 . . . 4 ((𝑓 = 𝐹𝑐 = 𝐶) → dom 𝑓 = dom 𝐹)
119fveq1d 6802 . . . . 5 ((𝑓 = 𝐹𝑐 = 𝐶) → (𝑓𝑥) = (𝐹𝑥))
12 simpr 486 . . . . 5 ((𝑓 = 𝐹𝑐 = 𝐶) → 𝑐 = 𝐶)
1311, 12oveq12d 7321 . . . 4 ((𝑓 = 𝐹𝑐 = 𝐶) → ((𝑓𝑥)𝑅𝑐) = ((𝐹𝑥)𝑅𝐶))
1410, 13mpteq12dv 5172 . . 3 ((𝑓 = 𝐹𝑐 = 𝐶) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
15 df-ofc 32105 . . 3 f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)))
1614, 15ovmpoga 7455 . 2 ((𝐹 ∈ V ∧ 𝐶 ∈ V ∧ (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V) → (𝐹f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
172, 4, 8, 16syl3anc 1371 1 ((𝐹𝑉𝐶𝑊) → (𝐹f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  cmpt 5164  dom cdm 5596  cfv 6454  (class class class)co 7303  f/c cofc 32104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7616
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5496  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-ov 7306  df-oprab 7307  df-mpo 7308  df-ofc 32105
This theorem is referenced by:  ofcfval4  32114  measdivcst  32233
  Copyright terms: Public domain W3C validator