| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval3 | Structured version Visualization version GIF version | ||
| Description: General value of (𝐹 ∘f/c 𝑅𝐶) with no assumptions on functionality of 𝐹. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcfval3 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐹 ∈ V) |
| 3 | elex 3468 | . . 3 ⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ V) | |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐶 ∈ V) |
| 5 | dmexg 7877 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 6 | mptexg 7195 | . . . 4 ⊢ (dom 𝐹 ∈ V → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
| 8 | 7 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
| 9 | simpl 482 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → 𝑓 = 𝐹) | |
| 10 | 9 | dmeqd 5869 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → dom 𝑓 = dom 𝐹) |
| 11 | 9 | fveq1d 6860 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
| 13 | 11, 12 | oveq12d 7405 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → ((𝑓‘𝑥)𝑅𝑐) = ((𝐹‘𝑥)𝑅𝐶)) |
| 14 | 10, 13 | mpteq12dv 5194 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
| 15 | df-ofc 34086 | . . 3 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
| 16 | 14, 15 | ovmpoga 7543 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐶 ∈ V ∧ (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
| 17 | 2, 4, 8, 16 | syl3anc 1373 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ↦ cmpt 5188 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ∘f/c cofc 34085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-ofc 34086 |
| This theorem is referenced by: ofcfval4 34095 measdivcst 34214 |
| Copyright terms: Public domain | W3C validator |