![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval3 | Structured version Visualization version GIF version |
Description: General value of (𝐹 ∘f/c 𝑅𝐶) with no assumptions on functionality of 𝐹. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval3 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐹 ∈ V) |
3 | elex 3485 | . . 3 ⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ V) | |
4 | 3 | adantl 481 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐶 ∈ V) |
5 | dmexg 7887 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
6 | mptexg 7214 | . . . 4 ⊢ (dom 𝐹 ∈ V → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
8 | 7 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
9 | simpl 482 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → 𝑓 = 𝐹) | |
10 | 9 | dmeqd 5895 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → dom 𝑓 = dom 𝐹) |
11 | 9 | fveq1d 6883 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
12 | simpr 484 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
13 | 11, 12 | oveq12d 7419 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → ((𝑓‘𝑥)𝑅𝑐) = ((𝐹‘𝑥)𝑅𝐶)) |
14 | 10, 13 | mpteq12dv 5229 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
15 | df-ofc 33549 | . . 3 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
16 | 14, 15 | ovmpoga 7554 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐶 ∈ V ∧ (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
17 | 2, 4, 8, 16 | syl3anc 1368 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ↦ cmpt 5221 dom cdm 5666 ‘cfv 6533 (class class class)co 7401 ∘f/c cofc 33548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-ofc 33549 |
This theorem is referenced by: ofcfval4 33558 measdivcst 33677 |
Copyright terms: Public domain | W3C validator |