Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval3 | Structured version Visualization version GIF version |
Description: General value of (𝐹 ∘f/c 𝑅𝐶) with no assumptions on functionality of 𝐹. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval3 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3455 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐹 ∈ V) |
3 | elex 3455 | . . 3 ⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ V) | |
4 | 3 | adantl 483 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐶 ∈ V) |
5 | dmexg 7778 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
6 | mptexg 7125 | . . . 4 ⊢ (dom 𝐹 ∈ V → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
8 | 7 | adantr 482 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
9 | simpl 484 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → 𝑓 = 𝐹) | |
10 | 9 | dmeqd 5823 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → dom 𝑓 = dom 𝐹) |
11 | 9 | fveq1d 6802 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
12 | simpr 486 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
13 | 11, 12 | oveq12d 7321 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → ((𝑓‘𝑥)𝑅𝑐) = ((𝐹‘𝑥)𝑅𝐶)) |
14 | 10, 13 | mpteq12dv 5172 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
15 | df-ofc 32105 | . . 3 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
16 | 14, 15 | ovmpoga 7455 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐶 ∈ V ∧ (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
17 | 2, 4, 8, 16 | syl3anc 1371 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ↦ cmpt 5164 dom cdm 5596 ‘cfv 6454 (class class class)co 7303 ∘f/c cofc 32104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7616 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5496 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-ov 7306 df-oprab 7307 df-mpo 7308 df-ofc 32105 |
This theorem is referenced by: ofcfval4 32114 measdivcst 32233 |
Copyright terms: Public domain | W3C validator |