![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval3 | Structured version Visualization version GIF version |
Description: General value of (𝐹 ∘f/c 𝑅𝐶) with no assumptions on functionality of 𝐹. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval3 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3480 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | 1 | adantr 479 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐹 ∈ V) |
3 | elex 3480 | . . 3 ⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ V) | |
4 | 3 | adantl 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐶 ∈ V) |
5 | dmexg 7909 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
6 | mptexg 7233 | . . . 4 ⊢ (dom 𝐹 ∈ V → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
8 | 7 | adantr 479 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) |
9 | simpl 481 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → 𝑓 = 𝐹) | |
10 | 9 | dmeqd 5908 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → dom 𝑓 = dom 𝐹) |
11 | 9 | fveq1d 6898 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
12 | simpr 483 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
13 | 11, 12 | oveq12d 7437 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → ((𝑓‘𝑥)𝑅𝑐) = ((𝐹‘𝑥)𝑅𝐶)) |
14 | 10, 13 | mpteq12dv 5240 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑐 = 𝐶) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
15 | df-ofc 33846 | . . 3 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
16 | 14, 15 | ovmpoga 7575 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐶 ∈ V ∧ (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶)) ∈ V) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
17 | 2, 4, 8, 16 | syl3anc 1368 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ↦ cmpt 5232 dom cdm 5678 ‘cfv 6549 (class class class)co 7419 ∘f/c cofc 33845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-ofc 33846 |
This theorem is referenced by: ofcfval4 33855 measdivcst 33974 |
Copyright terms: Public domain | W3C validator |