Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval3 Structured version   Visualization version   GIF version

Theorem ofcfval3 34092
Description: General value of (𝐹f/c 𝑅𝐶) with no assumptions on functionality of 𝐹. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
ofcfval3 ((𝐹𝑉𝐶𝑊) → (𝐹f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval3
Dummy variables 𝑓 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . . 3 (𝐹𝑉𝐹 ∈ V)
21adantr 480 . 2 ((𝐹𝑉𝐶𝑊) → 𝐹 ∈ V)
3 elex 3468 . . 3 (𝐶𝑊𝐶 ∈ V)
43adantl 481 . 2 ((𝐹𝑉𝐶𝑊) → 𝐶 ∈ V)
5 dmexg 7877 . . . 4 (𝐹𝑉 → dom 𝐹 ∈ V)
6 mptexg 7195 . . . 4 (dom 𝐹 ∈ V → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V)
75, 6syl 17 . . 3 (𝐹𝑉 → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V)
87adantr 480 . 2 ((𝐹𝑉𝐶𝑊) → (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V)
9 simpl 482 . . . . 5 ((𝑓 = 𝐹𝑐 = 𝐶) → 𝑓 = 𝐹)
109dmeqd 5869 . . . 4 ((𝑓 = 𝐹𝑐 = 𝐶) → dom 𝑓 = dom 𝐹)
119fveq1d 6860 . . . . 5 ((𝑓 = 𝐹𝑐 = 𝐶) → (𝑓𝑥) = (𝐹𝑥))
12 simpr 484 . . . . 5 ((𝑓 = 𝐹𝑐 = 𝐶) → 𝑐 = 𝐶)
1311, 12oveq12d 7405 . . . 4 ((𝑓 = 𝐹𝑐 = 𝐶) → ((𝑓𝑥)𝑅𝑐) = ((𝐹𝑥)𝑅𝐶))
1410, 13mpteq12dv 5194 . . 3 ((𝑓 = 𝐹𝑐 = 𝐶) → (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
15 df-ofc 34086 . . 3 f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)))
1614, 15ovmpoga 7543 . 2 ((𝐹 ∈ V ∧ 𝐶 ∈ V ∧ (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)) ∈ V) → (𝐹f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
172, 4, 8, 16syl3anc 1373 1 ((𝐹𝑉𝐶𝑊) → (𝐹f/c 𝑅𝐶) = (𝑥 ∈ dom 𝐹 ↦ ((𝐹𝑥)𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  f/c cofc 34085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-ofc 34086
This theorem is referenced by:  ofcfval4  34095  measdivcst  34214
  Copyright terms: Public domain W3C validator