Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofceq | Structured version Visualization version GIF version |
Description: Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofceq | ⊢ (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7261 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑓‘𝑥)𝑅𝑐) = ((𝑓‘𝑥)𝑆𝑐)) | |
2 | 1 | mpteq2dv 5172 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐))) |
3 | 2 | mpoeq3dv 7332 | . 2 ⊢ (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐)))) |
4 | df-ofc 31964 | . 2 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
5 | df-ofc 31964 | . 2 ⊢ ∘f/c 𝑆 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐))) | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3422 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ∘f/c cofc 31963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-ofc 31964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |