![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofceq | Structured version Visualization version GIF version |
Description: Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofceq | ⊢ (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7411 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑓‘𝑥)𝑅𝑐) = ((𝑓‘𝑥)𝑆𝑐)) | |
2 | 1 | mpteq2dv 5249 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐))) |
3 | 2 | mpoeq3dv 7484 | . 2 ⊢ (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐)))) |
4 | df-ofc 33082 | . 2 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
5 | df-ofc 33082 | . 2 ⊢ ∘f/c 𝑆 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐))) | |
6 | 3, 4, 5 | 3eqtr4g 2797 | 1 ⊢ (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 Vcvv 3474 ↦ cmpt 5230 dom cdm 5675 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 ∘f/c cofc 33081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-iota 6492 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-ofc 33082 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |