Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofceq Structured version   Visualization version   GIF version

Theorem ofceq 34078
Description: Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Assertion
Ref Expression
ofceq (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆)

Proof of Theorem ofceq
Dummy variables 𝑓 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 7437 . . . 4 (𝑅 = 𝑆 → ((𝑓𝑥)𝑅𝑐) = ((𝑓𝑥)𝑆𝑐))
21mpteq2dv 5250 . . 3 (𝑅 = 𝑆 → (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑆𝑐)))
32mpoeq3dv 7512 . 2 (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐))) = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑆𝑐))))
4 df-ofc 34077 . 2 f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)))
5 df-ofc 34077 . 2 f/c 𝑆 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑆𝑐)))
63, 4, 53eqtr4g 2800 1 (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Vcvv 3478  cmpt 5231  dom cdm 5689  cfv 6563  (class class class)co 7431  cmpo 7433  f/c cofc 34076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-iota 6516  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-ofc 34077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator