Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofceq Structured version   Visualization version   GIF version

Theorem ofceq 33083
Description: Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Assertion
Ref Expression
ofceq (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆)

Proof of Theorem ofceq
Dummy variables 𝑓 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 7411 . . . 4 (𝑅 = 𝑆 → ((𝑓𝑥)𝑅𝑐) = ((𝑓𝑥)𝑆𝑐))
21mpteq2dv 5249 . . 3 (𝑅 = 𝑆 → (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑆𝑐)))
32mpoeq3dv 7484 . 2 (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐))) = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑆𝑐))))
4 df-ofc 33082 . 2 f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)))
5 df-ofc 33082 . 2 f/c 𝑆 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑆𝑐)))
63, 4, 53eqtr4g 2797 1 (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Vcvv 3474  cmpt 5230  dom cdm 5675  cfv 6540  (class class class)co 7405  cmpo 7407  f/c cofc 33081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-ss 3964  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-iota 6492  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-ofc 33082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator