![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofceq | Structured version Visualization version GIF version |
Description: Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofceq | ⊢ (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7408 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑓‘𝑥)𝑅𝑐) = ((𝑓‘𝑥)𝑆𝑐)) | |
2 | 1 | mpteq2dv 5241 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐))) |
3 | 2 | mpoeq3dv 7481 | . 2 ⊢ (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐)))) |
4 | df-ofc 33613 | . 2 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
5 | df-ofc 33613 | . 2 ⊢ ∘f/c 𝑆 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐))) | |
6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 Vcvv 3466 ↦ cmpt 5222 dom cdm 5667 ‘cfv 6534 (class class class)co 7402 ∈ cmpo 7404 ∘f/c cofc 33612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3948 df-ss 3958 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-iota 6486 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-ofc 33613 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |