![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofceq | Structured version Visualization version GIF version |
Description: Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofceq | ⊢ (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq 7454 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑓‘𝑥)𝑅𝑐) = ((𝑓‘𝑥)𝑆𝑐)) | |
2 | 1 | mpteq2dv 5268 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐)) = (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐))) |
3 | 2 | mpoeq3dv 7529 | . 2 ⊢ (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐)))) |
4 | df-ofc 34060 | . 2 ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) | |
5 | df-ofc 34060 | . 2 ⊢ ∘f/c 𝑆 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑆𝑐))) | |
6 | 3, 4, 5 | 3eqtr4g 2805 | 1 ⊢ (𝑅 = 𝑆 → ∘f/c 𝑅 = ∘f/c 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3488 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ∘f/c cofc 34059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-ofc 34060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |