|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-ofld | Structured version Visualization version GIF version | ||
| Description: Define class of all ordered fields. An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| df-ofld | ⊢ oField = (Field ∩ oRing) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cofld 33326 | . 2 class oField | |
| 2 | cfield 20730 | . . 3 class Field | |
| 3 | corng 33325 | . . 3 class oRing | |
| 4 | 2, 3 | cin 3950 | . 2 class (Field ∩ oRing) | 
| 5 | 1, 4 | wceq 1540 | 1 wff oField = (Field ∩ oRing) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: isofld 33332 | 
| Copyright terms: Public domain | W3C validator |