| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isofld | Structured version Visualization version GIF version | ||
| Description: An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| isofld | ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ofld 33329 | . 2 ⊢ oField = (Field ∩ oRing) | |
| 2 | 1 | elin2 4202 | 1 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 Fieldcfield 20731 oRingcorng 33326 oFieldcofld 33327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-in 3957 df-ofld 33329 |
| This theorem is referenced by: ofldfld 33341 ofldtos 33342 ofldlt1 33344 ofldchr 33345 subofld 33347 isarchiofld 33348 reofld 33373 nn0omnd 33374 |
| Copyright terms: Public domain | W3C validator |