| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isofld | Structured version Visualization version GIF version | ||
| Description: An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| isofld | ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ofld 20779 | . 2 ⊢ oField = (Field ∩ oRing) | |
| 2 | 1 | elin2 4152 | 1 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Fieldcfield 20649 oRingcorng 20776 oFieldcofld 20777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ofld 20779 |
| This theorem is referenced by: ofldfld 20791 ofldtos 20792 ofldlt1 20794 subofld 20796 ofldchr 21517 isarchiofld 33177 reofld 33317 nn0omnd 33318 |
| Copyright terms: Public domain | W3C validator |