MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofld Structured version   Visualization version   GIF version

Theorem isofld 20767
Description: An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
isofld (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))

Proof of Theorem isofld
StepHypRef Expression
1 df-ofld 20763 . 2 oField = (Field ∩ oRing)
21elin2 4156 1 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Fieldcfield 20633  oRingcorng 20760  oFieldcofld 20761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-in 3912  df-ofld 20763
This theorem is referenced by:  ofldfld  20775  ofldtos  20776  ofldlt1  20778  subofld  20780  ofldchr  21501  isarchiofld  33154  reofld  33294  nn0omnd  33295
  Copyright terms: Public domain W3C validator