![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isofld | Structured version Visualization version GIF version |
Description: An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
isofld | ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofld 33308 | . 2 ⊢ oField = (Field ∩ oRing) | |
2 | 1 | elin2 4213 | 1 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 Fieldcfield 20747 oRingcorng 33305 oFieldcofld 33306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-ofld 33308 |
This theorem is referenced by: ofldfld 33320 ofldtos 33321 ofldlt1 33323 ofldchr 33324 subofld 33326 isarchiofld 33327 reofld 33352 nn0omnd 33353 |
Copyright terms: Public domain | W3C validator |