Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isofld | Structured version Visualization version GIF version |
Description: An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
isofld | ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofld 31493 | . 2 ⊢ oField = (Field ∩ oRing) | |
2 | 1 | elin2 4136 | 1 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2110 Fieldcfield 19990 oRingcorng 31490 oFieldcofld 31491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ofld 31493 |
This theorem is referenced by: ofldfld 31505 ofldtos 31506 ofldlt1 31508 ofldchr 31509 subofld 31511 isarchiofld 31512 reofld 31540 nn0omnd 31541 |
Copyright terms: Public domain | W3C validator |