MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofld Structured version   Visualization version   GIF version

Theorem isofld 20780
Description: An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
isofld (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))

Proof of Theorem isofld
StepHypRef Expression
1 df-ofld 20776 . 2 oField = (Field ∩ oRing)
21elin2 4153 1 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2111  Fieldcfield 20646  oRingcorng 20773  oFieldcofld 20774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3909  df-ofld 20776
This theorem is referenced by:  ofldfld  20788  ofldtos  20789  ofldlt1  20791  subofld  20793  ofldchr  21514  isarchiofld  33166  reofld  33306  nn0omnd  33307
  Copyright terms: Public domain W3C validator