Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isofld Structured version   Visualization version   GIF version

Theorem isofld 30554
 Description: An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
isofld (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))

Proof of Theorem isofld
StepHypRef Expression
1 df-ofld 30550 . 2 oField = (Field ∩ oRing)
21elin2 4064 1 (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   ∧ wa 387   ∈ wcel 2050  Fieldcfield 19229  oRingcorng 30547  oFieldcofld 30548 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-v 3417  df-in 3838  df-ofld 30550 This theorem is referenced by:  ofldfld  30562  ofldtos  30563  ofldlt1  30565  ofldchr  30566  subofld  30568  isarchiofld  30569  reofld  30592  nn0omnd  30593
 Copyright terms: Public domain W3C validator