Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isofld | Structured version Visualization version GIF version |
Description: An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
Ref | Expression |
---|---|
isofld | ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofld 31497 | . 2 ⊢ oField = (Field ∩ oRing) | |
2 | 1 | elin2 4131 | 1 ⊢ (𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Fieldcfield 19992 oRingcorng 31494 oFieldcofld 31495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ofld 31497 |
This theorem is referenced by: ofldfld 31509 ofldtos 31510 ofldlt1 31512 ofldchr 31513 subofld 31515 isarchiofld 31516 reofld 31544 nn0omnd 31545 |
Copyright terms: Public domain | W3C validator |