Detailed syntax breakdown of Definition df-orng
Step | Hyp | Ref
| Expression |
1 | | corng 31396 |
. 2
class
oRing |
2 | | vz |
. . . . . . . . . . . . 13
setvar 𝑧 |
3 | 2 | cv 1538 |
. . . . . . . . . . . 12
class 𝑧 |
4 | | va |
. . . . . . . . . . . . 13
setvar 𝑎 |
5 | 4 | cv 1538 |
. . . . . . . . . . . 12
class 𝑎 |
6 | | vl |
. . . . . . . . . . . . 13
setvar 𝑙 |
7 | 6 | cv 1538 |
. . . . . . . . . . . 12
class 𝑙 |
8 | 3, 5, 7 | wbr 5070 |
. . . . . . . . . . 11
wff 𝑧𝑙𝑎 |
9 | | vb |
. . . . . . . . . . . . 13
setvar 𝑏 |
10 | 9 | cv 1538 |
. . . . . . . . . . . 12
class 𝑏 |
11 | 3, 10, 7 | wbr 5070 |
. . . . . . . . . . 11
wff 𝑧𝑙𝑏 |
12 | 8, 11 | wa 395 |
. . . . . . . . . 10
wff (𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) |
13 | | vt |
. . . . . . . . . . . . 13
setvar 𝑡 |
14 | 13 | cv 1538 |
. . . . . . . . . . . 12
class 𝑡 |
15 | 5, 10, 14 | co 7255 |
. . . . . . . . . . 11
class (𝑎𝑡𝑏) |
16 | 3, 15, 7 | wbr 5070 |
. . . . . . . . . 10
wff 𝑧𝑙(𝑎𝑡𝑏) |
17 | 12, 16 | wi 4 |
. . . . . . . . 9
wff ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) |
18 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
19 | 18 | cv 1538 |
. . . . . . . . 9
class 𝑣 |
20 | 17, 9, 19 | wral 3063 |
. . . . . . . 8
wff
∀𝑏 ∈
𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) |
21 | 20, 4, 19 | wral 3063 |
. . . . . . 7
wff
∀𝑎 ∈
𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) |
22 | | vr |
. . . . . . . . 9
setvar 𝑟 |
23 | 22 | cv 1538 |
. . . . . . . 8
class 𝑟 |
24 | | cple 16895 |
. . . . . . . 8
class
le |
25 | 23, 24 | cfv 6418 |
. . . . . . 7
class
(le‘𝑟) |
26 | 21, 6, 25 | wsbc 3711 |
. . . . . 6
wff
[(le‘𝑟)
/ 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) |
27 | | cmulr 16889 |
. . . . . . 7
class
.r |
28 | 23, 27 | cfv 6418 |
. . . . . 6
class
(.r‘𝑟) |
29 | 26, 13, 28 | wsbc 3711 |
. . . . 5
wff
[(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) |
30 | | c0g 17067 |
. . . . . 6
class
0g |
31 | 23, 30 | cfv 6418 |
. . . . 5
class
(0g‘𝑟) |
32 | 29, 2, 31 | wsbc 3711 |
. . . 4
wff
[(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) |
33 | | cbs 16840 |
. . . . 5
class
Base |
34 | 23, 33 | cfv 6418 |
. . . 4
class
(Base‘𝑟) |
35 | 32, 18, 34 | wsbc 3711 |
. . 3
wff
[(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) |
36 | | crg 19698 |
. . . 4
class
Ring |
37 | | cogrp 31226 |
. . . 4
class
oGrp |
38 | 36, 37 | cin 3882 |
. . 3
class (Ring
∩ oGrp) |
39 | 35, 22, 38 | crab 3067 |
. 2
class {𝑟 ∈ (Ring ∩ oGrp)
∣ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} |
40 | 1, 39 | wceq 1539 |
1
wff oRing =
{𝑟 ∈ (Ring ∩ oGrp)
∣ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} |