Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-orng Structured version   Visualization version   GIF version

Definition df-orng 32415
Description: Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
df-orng oRing = {π‘Ÿ ∈ (Ring ∩ oGrp) ∣ [(Baseβ€˜π‘Ÿ) / 𝑣][(0gβ€˜π‘Ÿ) / 𝑧][(.rβ€˜π‘Ÿ) / 𝑑][(leβ€˜π‘Ÿ) / 𝑙]βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))}
Distinct variable group:   π‘Ž,𝑏,𝑙,π‘Ÿ,𝑑,𝑣,𝑧

Detailed syntax breakdown of Definition df-orng
StepHypRef Expression
1 corng 32413 . 2 class oRing
2 vz . . . . . . . . . . . . 13 setvar 𝑧
32cv 1541 . . . . . . . . . . . 12 class 𝑧
4 va . . . . . . . . . . . . 13 setvar π‘Ž
54cv 1541 . . . . . . . . . . . 12 class π‘Ž
6 vl . . . . . . . . . . . . 13 setvar 𝑙
76cv 1541 . . . . . . . . . . . 12 class 𝑙
83, 5, 7wbr 5149 . . . . . . . . . . 11 wff π‘§π‘™π‘Ž
9 vb . . . . . . . . . . . . 13 setvar 𝑏
109cv 1541 . . . . . . . . . . . 12 class 𝑏
113, 10, 7wbr 5149 . . . . . . . . . . 11 wff 𝑧𝑙𝑏
128, 11wa 397 . . . . . . . . . 10 wff (π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏)
13 vt . . . . . . . . . . . . 13 setvar 𝑑
1413cv 1541 . . . . . . . . . . . 12 class 𝑑
155, 10, 14co 7409 . . . . . . . . . . 11 class (π‘Žπ‘‘π‘)
163, 15, 7wbr 5149 . . . . . . . . . 10 wff 𝑧𝑙(π‘Žπ‘‘π‘)
1712, 16wi 4 . . . . . . . . 9 wff ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))
18 vv . . . . . . . . . 10 setvar 𝑣
1918cv 1541 . . . . . . . . 9 class 𝑣
2017, 9, 19wral 3062 . . . . . . . 8 wff βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))
2120, 4, 19wral 3062 . . . . . . 7 wff βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))
22 vr . . . . . . . . 9 setvar π‘Ÿ
2322cv 1541 . . . . . . . 8 class π‘Ÿ
24 cple 17204 . . . . . . . 8 class le
2523, 24cfv 6544 . . . . . . 7 class (leβ€˜π‘Ÿ)
2621, 6, 25wsbc 3778 . . . . . 6 wff [(leβ€˜π‘Ÿ) / 𝑙]βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))
27 cmulr 17198 . . . . . . 7 class .r
2823, 27cfv 6544 . . . . . 6 class (.rβ€˜π‘Ÿ)
2926, 13, 28wsbc 3778 . . . . 5 wff [(.rβ€˜π‘Ÿ) / 𝑑][(leβ€˜π‘Ÿ) / 𝑙]βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))
30 c0g 17385 . . . . . 6 class 0g
3123, 30cfv 6544 . . . . 5 class (0gβ€˜π‘Ÿ)
3229, 2, 31wsbc 3778 . . . 4 wff [(0gβ€˜π‘Ÿ) / 𝑧][(.rβ€˜π‘Ÿ) / 𝑑][(leβ€˜π‘Ÿ) / 𝑙]βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))
33 cbs 17144 . . . . 5 class Base
3423, 33cfv 6544 . . . 4 class (Baseβ€˜π‘Ÿ)
3532, 18, 34wsbc 3778 . . 3 wff [(Baseβ€˜π‘Ÿ) / 𝑣][(0gβ€˜π‘Ÿ) / 𝑧][(.rβ€˜π‘Ÿ) / 𝑑][(leβ€˜π‘Ÿ) / 𝑙]βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))
36 crg 20056 . . . 4 class Ring
37 cogrp 32216 . . . 4 class oGrp
3836, 37cin 3948 . . 3 class (Ring ∩ oGrp)
3935, 22, 38crab 3433 . 2 class {π‘Ÿ ∈ (Ring ∩ oGrp) ∣ [(Baseβ€˜π‘Ÿ) / 𝑣][(0gβ€˜π‘Ÿ) / 𝑧][(.rβ€˜π‘Ÿ) / 𝑑][(leβ€˜π‘Ÿ) / 𝑙]βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))}
401, 39wceq 1542 1 wff oRing = {π‘Ÿ ∈ (Ring ∩ oGrp) ∣ [(Baseβ€˜π‘Ÿ) / 𝑣][(0gβ€˜π‘Ÿ) / 𝑧][(.rβ€˜π‘Ÿ) / 𝑑][(leβ€˜π‘Ÿ) / 𝑙]βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 ((π‘§π‘™π‘Ž ∧ 𝑧𝑙𝑏) β†’ 𝑧𝑙(π‘Žπ‘‘π‘))}
Colors of variables: wff setvar class
This definition is referenced by:  isorng  32417
  Copyright terms: Public domain W3C validator