| Step | Hyp | Ref
| Expression |
| 1 | | elin 3967 |
. . 3
⊢ (𝑅 ∈ (Ring ∩ oGrp) ↔
(𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp)) |
| 2 | 1 | anbi1i 624 |
. 2
⊢ ((𝑅 ∈ (Ring ∩ oGrp) ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
| 3 | | fvexd 6921 |
. . . . 5
⊢ (𝑟 = 𝑅 → (.r‘𝑟) ∈ V) |
| 4 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → 𝑡 = (.r‘𝑟)) |
| 5 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → 𝑟 = 𝑅) |
| 6 | 5 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → (.r‘𝑟) = (.r‘𝑅)) |
| 7 | | isorng.2 |
. . . . . . . . . . . 12
⊢ · =
(.r‘𝑅) |
| 8 | 6, 7 | eqtr4di 2795 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → (.r‘𝑟) = · ) |
| 9 | 4, 8 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → 𝑡 = · ) |
| 10 | 9 | oveqd 7448 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → (𝑎𝑡𝑏) = (𝑎 · 𝑏)) |
| 11 | 10 | breq2d 5155 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → ( 0 𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎 · 𝑏))) |
| 12 | 11 | imbi2d 340 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → ((( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)))) |
| 13 | 12 | 2ralbidv 3221 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)))) |
| 14 | 13 | sbcbidv 3845 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → ([(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)))) |
| 15 | 3, 14 | sbcied 3832 |
. . . 4
⊢ (𝑟 = 𝑅 → ([(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)))) |
| 16 | | fvexd 6921 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) ∈ V) |
| 17 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟)) |
| 18 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 19 | | isorng.0 |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑅) |
| 20 | 18, 19 | eqtr4di 2795 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → (Base‘𝑟) = 𝐵) |
| 22 | 17, 21 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = 𝐵) |
| 23 | | raleq 3323 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → (∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
| 24 | 23 | raleqbi1dv 3338 |
. . . . . . . . . 10
⊢ (𝑣 = 𝐵 → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
| 25 | 22, 24 | syl 17 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
| 26 | 25 | sbcbidv 3845 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → ([(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
| 27 | 26 | sbcbidv 3845 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → ([(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
| 28 | 27 | sbcbidv 3845 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → ([(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
| 29 | 16, 28 | sbcied 3832 |
. . . . 5
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
| 30 | | fvexd 6921 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (0g‘𝑟) ∈ V) |
| 31 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → 𝑧 = (0g‘𝑟)) |
| 32 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
| 33 | | isorng.1 |
. . . . . . . . . . . . . . 15
⊢ 0 =
(0g‘𝑅) |
| 34 | 32, 33 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
| 35 | 34 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (0g‘𝑟) = 0 ) |
| 36 | 31, 35 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → 𝑧 = 0 ) |
| 37 | 36 | breq1d 5153 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (𝑧𝑙𝑎 ↔ 0 𝑙𝑎)) |
| 38 | 36 | breq1d 5153 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (𝑧𝑙𝑏 ↔ 0 𝑙𝑏)) |
| 39 | 37, 38 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) ↔ ( 0 𝑙𝑎 ∧ 0 𝑙𝑏))) |
| 40 | 36 | breq1d 5153 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (𝑧𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎𝑡𝑏))) |
| 41 | 39, 40 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
| 42 | 41 | 2ralbidv 3221 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
| 43 | 42 | sbcbidv 3845 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → ([(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
| 44 | 43 | sbcbidv 3845 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → ([(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
| 45 | 30, 44 | sbcied 3832 |
. . . . 5
⊢ (𝑟 = 𝑅 → ([(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
| 46 | 29, 45 | bitr2d 280 |
. . . 4
⊢ (𝑟 = 𝑅 → ([(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
| 47 | | fvexd 6921 |
. . . . 5
⊢ (𝑟 = 𝑅 → (le‘𝑟) ∈ V) |
| 48 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → 𝑙 = (le‘𝑟)) |
| 49 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → 𝑟 = 𝑅) |
| 50 | 49 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → (le‘𝑟) = (le‘𝑅)) |
| 51 | | isorng.3 |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝑅) |
| 52 | 50, 51 | eqtr4di 2795 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → (le‘𝑟) = ≤ ) |
| 53 | 48, 52 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → 𝑙 = ≤ ) |
| 54 | 53 | breqd 5154 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → ( 0 𝑙𝑎 ↔ 0 ≤ 𝑎)) |
| 55 | 53 | breqd 5154 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → ( 0 𝑙𝑏 ↔ 0 ≤ 𝑏)) |
| 56 | 54, 55 | anbi12d 632 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) ↔ ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏))) |
| 57 | 53 | breqd 5154 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → ( 0 𝑙(𝑎 · 𝑏) ↔ 0 ≤ (𝑎 · 𝑏))) |
| 58 | 56, 57 | imbi12d 344 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → ((( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
| 59 | 58 | 2ralbidv 3221 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
| 60 | 47, 59 | sbcied 3832 |
. . . 4
⊢ (𝑟 = 𝑅 → ([(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
| 61 | 15, 46, 60 | 3bitr3d 309 |
. . 3
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
| 62 | | df-orng 33327 |
. . 3
⊢ oRing =
{𝑟 ∈ (Ring ∩ oGrp)
∣ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} |
| 63 | 61, 62 | elrab2 3695 |
. 2
⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ (Ring ∩ oGrp) ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
| 64 | | df-3an 1089 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
| 65 | 2, 63, 64 | 3bitr4i 303 |
1
⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |