Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorng Structured version   Visualization version   GIF version

Theorem isorng 33294
Description: An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.)
Hypotheses
Ref Expression
isorng.0 𝐵 = (Base‘𝑅)
isorng.1 0 = (0g𝑅)
isorng.2 · = (.r𝑅)
isorng.3 = (le‘𝑅)
Assertion
Ref Expression
isorng (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
Distinct variable groups:   𝑎,𝑏,𝐵   𝑅,𝑎,𝑏
Allowed substitution hints:   · (𝑎,𝑏)   (𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem isorng
Dummy variables 𝑙 𝑟 𝑡 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3992 . . 3 (𝑅 ∈ (Ring ∩ oGrp) ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp))
21anbi1i 623 . 2 ((𝑅 ∈ (Ring ∩ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
3 fvexd 6935 . . . . 5 (𝑟 = 𝑅 → (.r𝑟) ∈ V)
4 simpr 484 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → 𝑡 = (.r𝑟))
5 simpl 482 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → 𝑟 = 𝑅)
65fveq2d 6924 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (.r𝑟) = (.r𝑅))
7 isorng.2 . . . . . . . . . . . 12 · = (.r𝑅)
86, 7eqtr4di 2798 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (.r𝑟) = · )
94, 8eqtrd 2780 . . . . . . . . . 10 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → 𝑡 = · )
109oveqd 7465 . . . . . . . . 9 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (𝑎𝑡𝑏) = (𝑎 · 𝑏))
1110breq2d 5178 . . . . . . . 8 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → ( 0 𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎 · 𝑏)))
1211imbi2d 340 . . . . . . 7 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → ((( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
13122ralbidv 3227 . . . . . 6 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
1413sbcbidv 3864 . . . . 5 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → ([(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
153, 14sbcied 3850 . . . 4 (𝑟 = 𝑅 → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
16 fvexd 6935 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
17 simpr 484 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟))
18 fveq2 6920 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
19 isorng.0 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑅)
2018, 19eqtr4di 2798 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
2120adantr 480 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → (Base‘𝑟) = 𝐵)
2217, 21eqtrd 2780 . . . . . . . . . 10 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → 𝑣 = 𝐵)
23 raleq 3331 . . . . . . . . . . 11 (𝑣 = 𝐵 → (∀𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2423raleqbi1dv 3346 . . . . . . . . . 10 (𝑣 = 𝐵 → (∀𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2522, 24syl 17 . . . . . . . . 9 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → (∀𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2625sbcbidv 3864 . . . . . . . 8 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → ([(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2726sbcbidv 3864 . . . . . . 7 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2827sbcbidv 3864 . . . . . 6 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → ([(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2916, 28sbcied 3850 . . . . 5 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
30 fvexd 6935 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) ∈ V)
31 simpr 484 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → 𝑧 = (0g𝑟))
32 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
33 isorng.1 . . . . . . . . . . . . . . 15 0 = (0g𝑅)
3432, 33eqtr4di 2798 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (0g𝑟) = 0 )
3534adantr 480 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (0g𝑟) = 0 )
3631, 35eqtrd 2780 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → 𝑧 = 0 )
3736breq1d 5176 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (𝑧𝑙𝑎0 𝑙𝑎))
3836breq1d 5176 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (𝑧𝑙𝑏0 𝑙𝑏))
3937, 38anbi12d 631 . . . . . . . . . 10 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → ((𝑧𝑙𝑎𝑧𝑙𝑏) ↔ ( 0 𝑙𝑎0 𝑙𝑏)))
4036breq1d 5176 . . . . . . . . . 10 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (𝑧𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎𝑡𝑏)))
4139, 40imbi12d 344 . . . . . . . . 9 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
42412ralbidv 3227 . . . . . . . 8 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (∀𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4342sbcbidv 3864 . . . . . . 7 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → ([(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4443sbcbidv 3864 . . . . . 6 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4530, 44sbcied 3850 . . . . 5 (𝑟 = 𝑅 → ([(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4629, 45bitr2d 280 . . . 4 (𝑟 = 𝑅 → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
47 fvexd 6935 . . . . 5 (𝑟 = 𝑅 → (le‘𝑟) ∈ V)
48 simpr 484 . . . . . . . . . 10 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → 𝑙 = (le‘𝑟))
49 simpl 482 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → 𝑟 = 𝑅)
5049fveq2d 6924 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (le‘𝑟) = (le‘𝑅))
51 isorng.3 . . . . . . . . . . 11 = (le‘𝑅)
5250, 51eqtr4di 2798 . . . . . . . . . 10 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (le‘𝑟) = )
5348, 52eqtrd 2780 . . . . . . . . 9 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → 𝑙 = )
5453breqd 5177 . . . . . . . 8 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ( 0 𝑙𝑎0 𝑎))
5553breqd 5177 . . . . . . . 8 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ( 0 𝑙𝑏0 𝑏))
5654, 55anbi12d 631 . . . . . . 7 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (( 0 𝑙𝑎0 𝑙𝑏) ↔ ( 0 𝑎0 𝑏)))
5753breqd 5177 . . . . . . 7 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ( 0 𝑙(𝑎 · 𝑏) ↔ 0 (𝑎 · 𝑏)))
5856, 57imbi12d 344 . . . . . 6 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ((( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
59582ralbidv 3227 . . . . 5 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
6047, 59sbcied 3850 . . . 4 (𝑟 = 𝑅 → ([(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
6115, 46, 603bitr3d 309 . . 3 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
62 df-orng 33292 . . 3 oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣ [(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))}
6361, 62elrab2 3711 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ (Ring ∩ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
64 df-3an 1089 . 2 ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
652, 63, 643bitr4i 303 1 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  [wsbc 3804  cin 3975   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  lecple 17318  0gc0g 17499  Ringcrg 20260  oGrpcogrp 33048  oRingcorng 33290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-orng 33292
This theorem is referenced by:  orngring  33295  orngogrp  33296  orngmul  33298  suborng  33310  reofld  33337
  Copyright terms: Public domain W3C validator