Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorng Structured version   Visualization version   GIF version

Theorem isorng 30926
Description: An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.)
Hypotheses
Ref Expression
isorng.0 𝐵 = (Base‘𝑅)
isorng.1 0 = (0g𝑅)
isorng.2 · = (.r𝑅)
isorng.3 = (le‘𝑅)
Assertion
Ref Expression
isorng (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
Distinct variable groups:   𝑎,𝑏,𝐵   𝑅,𝑎,𝑏
Allowed substitution hints:   · (𝑎,𝑏)   (𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem isorng
Dummy variables 𝑙 𝑟 𝑡 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3900 . . 3 (𝑅 ∈ (Ring ∩ oGrp) ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp))
21anbi1i 626 . 2 ((𝑅 ∈ (Ring ∩ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
3 fvexd 6664 . . . . 5 (𝑟 = 𝑅 → (.r𝑟) ∈ V)
4 simpr 488 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → 𝑡 = (.r𝑟))
5 simpl 486 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → 𝑟 = 𝑅)
65fveq2d 6653 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (.r𝑟) = (.r𝑅))
7 isorng.2 . . . . . . . . . . . 12 · = (.r𝑅)
86, 7eqtr4di 2854 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (.r𝑟) = · )
94, 8eqtrd 2836 . . . . . . . . . 10 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → 𝑡 = · )
109oveqd 7156 . . . . . . . . 9 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (𝑎𝑡𝑏) = (𝑎 · 𝑏))
1110breq2d 5045 . . . . . . . 8 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → ( 0 𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎 · 𝑏)))
1211imbi2d 344 . . . . . . 7 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → ((( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
13122ralbidv 3167 . . . . . 6 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
1413sbcbidv 3777 . . . . 5 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → ([(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
153, 14sbcied 3765 . . . 4 (𝑟 = 𝑅 → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
16 fvexd 6664 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
17 simpr 488 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟))
18 fveq2 6649 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
19 isorng.0 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑅)
2018, 19eqtr4di 2854 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
2120adantr 484 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → (Base‘𝑟) = 𝐵)
2217, 21eqtrd 2836 . . . . . . . . . 10 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → 𝑣 = 𝐵)
23 raleq 3361 . . . . . . . . . . 11 (𝑣 = 𝐵 → (∀𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2423raleqbi1dv 3359 . . . . . . . . . 10 (𝑣 = 𝐵 → (∀𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2522, 24syl 17 . . . . . . . . 9 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → (∀𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2625sbcbidv 3777 . . . . . . . 8 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → ([(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2726sbcbidv 3777 . . . . . . 7 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2827sbcbidv 3777 . . . . . 6 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → ([(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2916, 28sbcied 3765 . . . . 5 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
30 fvexd 6664 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) ∈ V)
31 simpr 488 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → 𝑧 = (0g𝑟))
32 fveq2 6649 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
33 isorng.1 . . . . . . . . . . . . . . 15 0 = (0g𝑅)
3432, 33eqtr4di 2854 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (0g𝑟) = 0 )
3534adantr 484 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (0g𝑟) = 0 )
3631, 35eqtrd 2836 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → 𝑧 = 0 )
3736breq1d 5043 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (𝑧𝑙𝑎0 𝑙𝑎))
3836breq1d 5043 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (𝑧𝑙𝑏0 𝑙𝑏))
3937, 38anbi12d 633 . . . . . . . . . 10 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → ((𝑧𝑙𝑎𝑧𝑙𝑏) ↔ ( 0 𝑙𝑎0 𝑙𝑏)))
4036breq1d 5043 . . . . . . . . . 10 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (𝑧𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎𝑡𝑏)))
4139, 40imbi12d 348 . . . . . . . . 9 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
42412ralbidv 3167 . . . . . . . 8 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (∀𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4342sbcbidv 3777 . . . . . . 7 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → ([(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4443sbcbidv 3777 . . . . . 6 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4530, 44sbcied 3765 . . . . 5 (𝑟 = 𝑅 → ([(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4629, 45bitr2d 283 . . . 4 (𝑟 = 𝑅 → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
47 fvexd 6664 . . . . 5 (𝑟 = 𝑅 → (le‘𝑟) ∈ V)
48 simpr 488 . . . . . . . . . 10 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → 𝑙 = (le‘𝑟))
49 simpl 486 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → 𝑟 = 𝑅)
5049fveq2d 6653 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (le‘𝑟) = (le‘𝑅))
51 isorng.3 . . . . . . . . . . 11 = (le‘𝑅)
5250, 51eqtr4di 2854 . . . . . . . . . 10 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (le‘𝑟) = )
5348, 52eqtrd 2836 . . . . . . . . 9 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → 𝑙 = )
5453breqd 5044 . . . . . . . 8 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ( 0 𝑙𝑎0 𝑎))
5553breqd 5044 . . . . . . . 8 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ( 0 𝑙𝑏0 𝑏))
5654, 55anbi12d 633 . . . . . . 7 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (( 0 𝑙𝑎0 𝑙𝑏) ↔ ( 0 𝑎0 𝑏)))
5753breqd 5044 . . . . . . 7 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ( 0 𝑙(𝑎 · 𝑏) ↔ 0 (𝑎 · 𝑏)))
5856, 57imbi12d 348 . . . . . 6 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ((( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
59582ralbidv 3167 . . . . 5 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
6047, 59sbcied 3765 . . . 4 (𝑟 = 𝑅 → ([(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
6115, 46, 603bitr3d 312 . . 3 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
62 df-orng 30924 . . 3 oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣ [(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))}
6361, 62elrab2 3634 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ (Ring ∩ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
64 df-3an 1086 . 2 ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
652, 63, 643bitr4i 306 1 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  Vcvv 3444  [wsbc 3723  cin 3883   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16478  .rcmulr 16561  lecple 16567  0gc0g 16708  Ringcrg 19293  oGrpcogrp 30752  oRingcorng 30922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-nul 5177
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-iota 6287  df-fv 6336  df-ov 7142  df-orng 30924
This theorem is referenced by:  orngring  30927  orngogrp  30928  orngmul  30930  suborng  30942  reofld  30967
  Copyright terms: Public domain W3C validator