Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isorng Structured version   Visualization version   GIF version

Theorem isorng 33309
Description: An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018.)
Hypotheses
Ref Expression
isorng.0 𝐵 = (Base‘𝑅)
isorng.1 0 = (0g𝑅)
isorng.2 · = (.r𝑅)
isorng.3 = (le‘𝑅)
Assertion
Ref Expression
isorng (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
Distinct variable groups:   𝑎,𝑏,𝐵   𝑅,𝑎,𝑏
Allowed substitution hints:   · (𝑎,𝑏)   (𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem isorng
Dummy variables 𝑙 𝑟 𝑡 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3979 . . 3 (𝑅 ∈ (Ring ∩ oGrp) ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp))
21anbi1i 624 . 2 ((𝑅 ∈ (Ring ∩ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
3 fvexd 6922 . . . . 5 (𝑟 = 𝑅 → (.r𝑟) ∈ V)
4 simpr 484 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → 𝑡 = (.r𝑟))
5 simpl 482 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → 𝑟 = 𝑅)
65fveq2d 6911 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (.r𝑟) = (.r𝑅))
7 isorng.2 . . . . . . . . . . . 12 · = (.r𝑅)
86, 7eqtr4di 2793 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (.r𝑟) = · )
94, 8eqtrd 2775 . . . . . . . . . 10 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → 𝑡 = · )
109oveqd 7448 . . . . . . . . 9 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (𝑎𝑡𝑏) = (𝑎 · 𝑏))
1110breq2d 5160 . . . . . . . 8 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → ( 0 𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎 · 𝑏)))
1211imbi2d 340 . . . . . . 7 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → ((( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
13122ralbidv 3219 . . . . . 6 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → (∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
1413sbcbidv 3851 . . . . 5 ((𝑟 = 𝑅𝑡 = (.r𝑟)) → ([(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
153, 14sbcied 3837 . . . 4 (𝑟 = 𝑅 → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏))))
16 fvexd 6922 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
17 simpr 484 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟))
18 fveq2 6907 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
19 isorng.0 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑅)
2018, 19eqtr4di 2793 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
2120adantr 480 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → (Base‘𝑟) = 𝐵)
2217, 21eqtrd 2775 . . . . . . . . . 10 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → 𝑣 = 𝐵)
23 raleq 3321 . . . . . . . . . . 11 (𝑣 = 𝐵 → (∀𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2423raleqbi1dv 3336 . . . . . . . . . 10 (𝑣 = 𝐵 → (∀𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2522, 24syl 17 . . . . . . . . 9 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → (∀𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2625sbcbidv 3851 . . . . . . . 8 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → ([(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2726sbcbidv 3851 . . . . . . 7 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2827sbcbidv 3851 . . . . . 6 ((𝑟 = 𝑅𝑣 = (Base‘𝑟)) → ([(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
2916, 28sbcied 3837 . . . . 5 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
30 fvexd 6922 . . . . . 6 (𝑟 = 𝑅 → (0g𝑟) ∈ V)
31 simpr 484 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → 𝑧 = (0g𝑟))
32 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
33 isorng.1 . . . . . . . . . . . . . . 15 0 = (0g𝑅)
3432, 33eqtr4di 2793 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → (0g𝑟) = 0 )
3534adantr 480 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (0g𝑟) = 0 )
3631, 35eqtrd 2775 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → 𝑧 = 0 )
3736breq1d 5158 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (𝑧𝑙𝑎0 𝑙𝑎))
3836breq1d 5158 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (𝑧𝑙𝑏0 𝑙𝑏))
3937, 38anbi12d 632 . . . . . . . . . 10 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → ((𝑧𝑙𝑎𝑧𝑙𝑏) ↔ ( 0 𝑙𝑎0 𝑙𝑏)))
4036breq1d 5158 . . . . . . . . . 10 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (𝑧𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎𝑡𝑏)))
4139, 40imbi12d 344 . . . . . . . . 9 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
42412ralbidv 3219 . . . . . . . 8 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → (∀𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4342sbcbidv 3851 . . . . . . 7 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → ([(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4443sbcbidv 3851 . . . . . 6 ((𝑟 = 𝑅𝑧 = (0g𝑟)) → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4530, 44sbcied 3837 . . . . 5 (𝑟 = 𝑅 → ([(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏))))
4629, 45bitr2d 280 . . . 4 (𝑟 = 𝑅 → ([(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))))
47 fvexd 6922 . . . . 5 (𝑟 = 𝑅 → (le‘𝑟) ∈ V)
48 simpr 484 . . . . . . . . . 10 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → 𝑙 = (le‘𝑟))
49 simpl 482 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → 𝑟 = 𝑅)
5049fveq2d 6911 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (le‘𝑟) = (le‘𝑅))
51 isorng.3 . . . . . . . . . . 11 = (le‘𝑅)
5250, 51eqtr4di 2793 . . . . . . . . . 10 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (le‘𝑟) = )
5348, 52eqtrd 2775 . . . . . . . . 9 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → 𝑙 = )
5453breqd 5159 . . . . . . . 8 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ( 0 𝑙𝑎0 𝑎))
5553breqd 5159 . . . . . . . 8 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ( 0 𝑙𝑏0 𝑏))
5654, 55anbi12d 632 . . . . . . 7 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (( 0 𝑙𝑎0 𝑙𝑏) ↔ ( 0 𝑎0 𝑏)))
5753breqd 5159 . . . . . . 7 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ( 0 𝑙(𝑎 · 𝑏) ↔ 0 (𝑎 · 𝑏)))
5856, 57imbi12d 344 . . . . . 6 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → ((( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
59582ralbidv 3219 . . . . 5 ((𝑟 = 𝑅𝑙 = (le‘𝑟)) → (∀𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
6047, 59sbcied 3837 . . . 4 (𝑟 = 𝑅 → ([(le‘𝑟) / 𝑙]𝑎𝐵𝑏𝐵 (( 0 𝑙𝑎0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
6115, 46, 603bitr3d 309 . . 3 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
62 df-orng 33307 . . 3 oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣ [(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))}
6361, 62elrab2 3698 . 2 (𝑅 ∈ oRing ↔ (𝑅 ∈ (Ring ∩ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
64 df-3an 1088 . 2 ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
652, 63, 643bitr4i 303 1 (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎𝐵𝑏𝐵 (( 0 𝑎0 𝑏) → 0 (𝑎 · 𝑏))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  [wsbc 3791  cin 3962   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  lecple 17305  0gc0g 17486  Ringcrg 20251  oGrpcogrp 33058  oRingcorng 33305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-orng 33307
This theorem is referenced by:  orngring  33310  orngogrp  33311  orngmul  33313  suborng  33325  reofld  33352
  Copyright terms: Public domain W3C validator