Step | Hyp | Ref
| Expression |
1 | | elin 3899 |
. . 3
⊢ (𝑅 ∈ (Ring ∩ oGrp) ↔
(𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp)) |
2 | 1 | anbi1i 623 |
. 2
⊢ ((𝑅 ∈ (Ring ∩ oGrp) ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
3 | | fvexd 6771 |
. . . . 5
⊢ (𝑟 = 𝑅 → (.r‘𝑟) ∈ V) |
4 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → 𝑡 = (.r‘𝑟)) |
5 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → 𝑟 = 𝑅) |
6 | 5 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → (.r‘𝑟) = (.r‘𝑅)) |
7 | | isorng.2 |
. . . . . . . . . . . 12
⊢ · =
(.r‘𝑅) |
8 | 6, 7 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → (.r‘𝑟) = · ) |
9 | 4, 8 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → 𝑡 = · ) |
10 | 9 | oveqd 7272 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → (𝑎𝑡𝑏) = (𝑎 · 𝑏)) |
11 | 10 | breq2d 5082 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → ( 0 𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎 · 𝑏))) |
12 | 11 | imbi2d 340 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → ((( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)))) |
13 | 12 | 2ralbidv 3122 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)))) |
14 | 13 | sbcbidv 3770 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑡 = (.r‘𝑟)) → ([(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)))) |
15 | 3, 14 | sbcied 3756 |
. . . 4
⊢ (𝑟 = 𝑅 → ([(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)))) |
16 | | fvexd 6771 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) ∈ V) |
17 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟)) |
18 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
19 | | isorng.0 |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑅) |
20 | 18, 19 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
21 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → (Base‘𝑟) = 𝐵) |
22 | 17, 21 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = 𝐵) |
23 | | raleq 3333 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → (∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
24 | 23 | raleqbi1dv 3331 |
. . . . . . . . . 10
⊢ (𝑣 = 𝐵 → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
25 | 22, 24 | syl 17 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
26 | 25 | sbcbidv 3770 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → ([(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
27 | 26 | sbcbidv 3770 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → ([(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
28 | 27 | sbcbidv 3770 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑣 = (Base‘𝑟)) → ([(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
29 | 16, 28 | sbcied 3756 |
. . . . 5
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
30 | | fvexd 6771 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (0g‘𝑟) ∈ V) |
31 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → 𝑧 = (0g‘𝑟)) |
32 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
33 | | isorng.1 |
. . . . . . . . . . . . . . 15
⊢ 0 =
(0g‘𝑅) |
34 | 32, 33 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (0g‘𝑟) = 0 ) |
36 | 31, 35 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → 𝑧 = 0 ) |
37 | 36 | breq1d 5080 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (𝑧𝑙𝑎 ↔ 0 𝑙𝑎)) |
38 | 36 | breq1d 5080 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (𝑧𝑙𝑏 ↔ 0 𝑙𝑏)) |
39 | 37, 38 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) ↔ ( 0 𝑙𝑎 ∧ 0 𝑙𝑏))) |
40 | 36 | breq1d 5080 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (𝑧𝑙(𝑎𝑡𝑏) ↔ 0 𝑙(𝑎𝑡𝑏))) |
41 | 39, 40 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
42 | 41 | 2ralbidv 3122 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
43 | 42 | sbcbidv 3770 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → ([(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
44 | 43 | sbcbidv 3770 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑧 = (0g‘𝑟)) → ([(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
45 | 30, 44 | sbcied 3756 |
. . . . 5
⊢ (𝑟 = 𝑅 → ([(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ [(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)))) |
46 | 29, 45 | bitr2d 279 |
. . . 4
⊢ (𝑟 = 𝑅 → ([(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎𝑡𝑏)) ↔ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)))) |
47 | | fvexd 6771 |
. . . . 5
⊢ (𝑟 = 𝑅 → (le‘𝑟) ∈ V) |
48 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → 𝑙 = (le‘𝑟)) |
49 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → 𝑟 = 𝑅) |
50 | 49 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → (le‘𝑟) = (le‘𝑅)) |
51 | | isorng.3 |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝑅) |
52 | 50, 51 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → (le‘𝑟) = ≤ ) |
53 | 48, 52 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → 𝑙 = ≤ ) |
54 | 53 | breqd 5081 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → ( 0 𝑙𝑎 ↔ 0 ≤ 𝑎)) |
55 | 53 | breqd 5081 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → ( 0 𝑙𝑏 ↔ 0 ≤ 𝑏)) |
56 | 54, 55 | anbi12d 630 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) ↔ ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏))) |
57 | 53 | breqd 5081 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → ( 0 𝑙(𝑎 · 𝑏) ↔ 0 ≤ (𝑎 · 𝑏))) |
58 | 56, 57 | imbi12d 344 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → ((( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
59 | 58 | 2ralbidv 3122 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑙 = (le‘𝑟)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
60 | 47, 59 | sbcied 3756 |
. . . 4
⊢ (𝑟 = 𝑅 → ([(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 𝑙𝑎 ∧ 0 𝑙𝑏) → 0 𝑙(𝑎 · 𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
61 | 15, 46, 60 | 3bitr3d 308 |
. . 3
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
62 | | df-orng 31398 |
. . 3
⊢ oRing =
{𝑟 ∈ (Ring ∩ oGrp)
∣ [(Base‘𝑟) / 𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} |
63 | 61, 62 | elrab2 3620 |
. 2
⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ (Ring ∩ oGrp) ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
64 | | df-3an 1087 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏))) ↔ ((𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |
65 | 2, 63, 64 | 3bitr4i 302 |
1
⊢ (𝑅 ∈ oRing ↔ (𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏) → 0 ≤ (𝑎 · 𝑏)))) |