MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoi Structured version   Visualization version   GIF version

Theorem nfoi 9533
Description: Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfoi.1 𝑥𝑅
nfoi.2 𝑥𝐴
Assertion
Ref Expression
nfoi 𝑥OrdIso(𝑅, 𝐴)

Proof of Theorem nfoi
Dummy variables 𝑎 𝑗 𝑡 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oi 9529 . 2 OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}), ∅)
2 nfoi.1 . . . . 5 𝑥𝑅
3 nfoi.2 . . . . 5 𝑥𝐴
42, 3nfwe 5634 . . . 4 𝑥 𝑅 We 𝐴
52, 3nfse 5633 . . . 4 𝑥 𝑅 Se 𝐴
64, 5nfan 1899 . . 3 𝑥(𝑅 We 𝐴𝑅 Se 𝐴)
7 nfcv 2899 . . . . . 6 𝑥V
8 nfcv 2899 . . . . . . . . . 10 𝑥ran
9 nfcv 2899 . . . . . . . . . . 11 𝑥𝑗
10 nfcv 2899 . . . . . . . . . . 11 𝑥𝑤
119, 2, 10nfbr 5171 . . . . . . . . . 10 𝑥 𝑗𝑅𝑤
128, 11nfralw 3295 . . . . . . . . 9 𝑥𝑗 ∈ ran 𝑗𝑅𝑤
1312, 3nfrabw 3459 . . . . . . . 8 𝑥{𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
14 nfcv 2899 . . . . . . . . . 10 𝑥𝑢
15 nfcv 2899 . . . . . . . . . 10 𝑥𝑣
1614, 2, 15nfbr 5171 . . . . . . . . 9 𝑥 𝑢𝑅𝑣
1716nfn 1857 . . . . . . . 8 𝑥 ¬ 𝑢𝑅𝑣
1813, 17nfralw 3295 . . . . . . 7 𝑥𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣
1918, 13nfriota 7379 . . . . . 6 𝑥(𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
207, 19nfmpt 5224 . . . . 5 𝑥( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2120nfrecs 8394 . . . 4 𝑥recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
22 nfcv 2899 . . . . . . . 8 𝑥𝑎
2321, 22nfima 6060 . . . . . . 7 𝑥(recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)
24 nfcv 2899 . . . . . . . 8 𝑥𝑧
25 nfcv 2899 . . . . . . . 8 𝑥𝑡
2624, 2, 25nfbr 5171 . . . . . . 7 𝑥 𝑧𝑅𝑡
2723, 26nfralw 3295 . . . . . 6 𝑥𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡
283, 27nfrexw 3297 . . . . 5 𝑥𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡
29 nfcv 2899 . . . . 5 𝑥On
3028, 29nfrabw 3459 . . . 4 𝑥{𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}
3121, 30nfres 5973 . . 3 𝑥(recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡})
32 nfcv 2899 . . 3 𝑥
336, 31, 32nfif 4536 . 2 𝑥if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}), ∅)
341, 33nfcxfr 2897 1 𝑥OrdIso(𝑅, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wnfc 2884  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  c0 4313  ifcif 4505   class class class wbr 5124  cmpt 5206   Se wse 5609   We wwe 5610  ran crn 5660  cres 5661  cima 5662  Oncon0 6357  crio 7366  recscrecs 8389  OrdIsocoi 9528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-iota 6489  df-fv 6544  df-riota 7367  df-ov 7413  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-oi 9529
This theorem is referenced by:  hsmexlem2  10446
  Copyright terms: Public domain W3C validator