MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoi Structured version   Visualization version   GIF version

Theorem nfoi 9555
Description: Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfoi.1 𝑥𝑅
nfoi.2 𝑥𝐴
Assertion
Ref Expression
nfoi 𝑥OrdIso(𝑅, 𝐴)

Proof of Theorem nfoi
Dummy variables 𝑎 𝑗 𝑡 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oi 9551 . 2 OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}), ∅)
2 nfoi.1 . . . . 5 𝑥𝑅
3 nfoi.2 . . . . 5 𝑥𝐴
42, 3nfwe 5659 . . . 4 𝑥 𝑅 We 𝐴
52, 3nfse 5658 . . . 4 𝑥 𝑅 Se 𝐴
64, 5nfan 1898 . . 3 𝑥(𝑅 We 𝐴𝑅 Se 𝐴)
7 nfcv 2904 . . . . . 6 𝑥V
8 nfcv 2904 . . . . . . . . . 10 𝑥ran
9 nfcv 2904 . . . . . . . . . . 11 𝑥𝑗
10 nfcv 2904 . . . . . . . . . . 11 𝑥𝑤
119, 2, 10nfbr 5189 . . . . . . . . . 10 𝑥 𝑗𝑅𝑤
128, 11nfralw 3310 . . . . . . . . 9 𝑥𝑗 ∈ ran 𝑗𝑅𝑤
1312, 3nfrabw 3474 . . . . . . . 8 𝑥{𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
14 nfcv 2904 . . . . . . . . . 10 𝑥𝑢
15 nfcv 2904 . . . . . . . . . 10 𝑥𝑣
1614, 2, 15nfbr 5189 . . . . . . . . 9 𝑥 𝑢𝑅𝑣
1716nfn 1856 . . . . . . . 8 𝑥 ¬ 𝑢𝑅𝑣
1813, 17nfralw 3310 . . . . . . 7 𝑥𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣
1918, 13nfriota 7401 . . . . . 6 𝑥(𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
207, 19nfmpt 5248 . . . . 5 𝑥( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2120nfrecs 8416 . . . 4 𝑥recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
22 nfcv 2904 . . . . . . . 8 𝑥𝑎
2321, 22nfima 6085 . . . . . . 7 𝑥(recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)
24 nfcv 2904 . . . . . . . 8 𝑥𝑧
25 nfcv 2904 . . . . . . . 8 𝑥𝑡
2624, 2, 25nfbr 5189 . . . . . . 7 𝑥 𝑧𝑅𝑡
2723, 26nfralw 3310 . . . . . 6 𝑥𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡
283, 27nfrexw 3312 . . . . 5 𝑥𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡
29 nfcv 2904 . . . . 5 𝑥On
3028, 29nfrabw 3474 . . . 4 𝑥{𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}
3121, 30nfres 5998 . . 3 𝑥(recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡})
32 nfcv 2904 . . 3 𝑥
336, 31, 32nfif 4555 . 2 𝑥if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}), ∅)
341, 33nfcxfr 2902 1 𝑥OrdIso(𝑅, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wnfc 2889  wral 3060  wrex 3069  {crab 3435  Vcvv 3479  c0 4332  ifcif 4524   class class class wbr 5142  cmpt 5224   Se wse 5634   We wwe 5635  ran crn 5685  cres 5686  cima 5687  Oncon0 6383  crio 7388  recscrecs 8411  OrdIsocoi 9550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-iota 6513  df-fv 6568  df-riota 7389  df-ov 7435  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-oi 9551
This theorem is referenced by:  hsmexlem2  10468
  Copyright terms: Public domain W3C validator