MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoi Structured version   Visualization version   GIF version

Theorem nfoi 9443
Description: Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfoi.1 𝑥𝑅
nfoi.2 𝑥𝐴
Assertion
Ref Expression
nfoi 𝑥OrdIso(𝑅, 𝐴)

Proof of Theorem nfoi
Dummy variables 𝑎 𝑗 𝑡 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oi 9439 . 2 OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}), ∅)
2 nfoi.1 . . . . 5 𝑥𝑅
3 nfoi.2 . . . . 5 𝑥𝐴
42, 3nfwe 5606 . . . 4 𝑥 𝑅 We 𝐴
52, 3nfse 5605 . . . 4 𝑥 𝑅 Se 𝐴
64, 5nfan 1899 . . 3 𝑥(𝑅 We 𝐴𝑅 Se 𝐴)
7 nfcv 2891 . . . . . 6 𝑥V
8 nfcv 2891 . . . . . . . . . 10 𝑥ran
9 nfcv 2891 . . . . . . . . . . 11 𝑥𝑗
10 nfcv 2891 . . . . . . . . . . 11 𝑥𝑤
119, 2, 10nfbr 5149 . . . . . . . . . 10 𝑥 𝑗𝑅𝑤
128, 11nfralw 3283 . . . . . . . . 9 𝑥𝑗 ∈ ran 𝑗𝑅𝑤
1312, 3nfrabw 3440 . . . . . . . 8 𝑥{𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
14 nfcv 2891 . . . . . . . . . 10 𝑥𝑢
15 nfcv 2891 . . . . . . . . . 10 𝑥𝑣
1614, 2, 15nfbr 5149 . . . . . . . . 9 𝑥 𝑢𝑅𝑣
1716nfn 1857 . . . . . . . 8 𝑥 ¬ 𝑢𝑅𝑣
1813, 17nfralw 3283 . . . . . . 7 𝑥𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣
1918, 13nfriota 7338 . . . . . 6 𝑥(𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
207, 19nfmpt 5200 . . . . 5 𝑥( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2120nfrecs 8320 . . . 4 𝑥recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
22 nfcv 2891 . . . . . . . 8 𝑥𝑎
2321, 22nfima 6028 . . . . . . 7 𝑥(recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)
24 nfcv 2891 . . . . . . . 8 𝑥𝑧
25 nfcv 2891 . . . . . . . 8 𝑥𝑡
2624, 2, 25nfbr 5149 . . . . . . 7 𝑥 𝑧𝑅𝑡
2723, 26nfralw 3283 . . . . . 6 𝑥𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡
283, 27nfrexw 3284 . . . . 5 𝑥𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡
29 nfcv 2891 . . . . 5 𝑥On
3028, 29nfrabw 3440 . . . 4 𝑥{𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}
3121, 30nfres 5941 . . 3 𝑥(recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡})
32 nfcv 2891 . . 3 𝑥
336, 31, 32nfif 4515 . 2 𝑥if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}), ∅)
341, 33nfcxfr 2889 1 𝑥OrdIso(𝑅, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wnfc 2876  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  c0 4292  ifcif 4484   class class class wbr 5102  cmpt 5183   Se wse 5582   We wwe 5583  ran crn 5632  cres 5633  cima 5634  Oncon0 6320  crio 7325  recscrecs 8316  OrdIsocoi 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fv 6507  df-riota 7326  df-ov 7372  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-oi 9439
This theorem is referenced by:  hsmexlem2  10356
  Copyright terms: Public domain W3C validator