MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoi Structured version   Visualization version   GIF version

Theorem nfoi 9409
Description: Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfoi.1 𝑥𝑅
nfoi.2 𝑥𝐴
Assertion
Ref Expression
nfoi 𝑥OrdIso(𝑅, 𝐴)

Proof of Theorem nfoi
Dummy variables 𝑎 𝑗 𝑡 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oi 9405 . 2 OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}), ∅)
2 nfoi.1 . . . . 5 𝑥𝑅
3 nfoi.2 . . . . 5 𝑥𝐴
42, 3nfwe 5596 . . . 4 𝑥 𝑅 We 𝐴
52, 3nfse 5595 . . . 4 𝑥 𝑅 Se 𝐴
64, 5nfan 1900 . . 3 𝑥(𝑅 We 𝐴𝑅 Se 𝐴)
7 nfcv 2895 . . . . . 6 𝑥V
8 nfcv 2895 . . . . . . . . . 10 𝑥ran
9 nfcv 2895 . . . . . . . . . . 11 𝑥𝑗
10 nfcv 2895 . . . . . . . . . . 11 𝑥𝑤
119, 2, 10nfbr 5142 . . . . . . . . . 10 𝑥 𝑗𝑅𝑤
128, 11nfralw 3280 . . . . . . . . 9 𝑥𝑗 ∈ ran 𝑗𝑅𝑤
1312, 3nfrabw 3433 . . . . . . . 8 𝑥{𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
14 nfcv 2895 . . . . . . . . . 10 𝑥𝑢
15 nfcv 2895 . . . . . . . . . 10 𝑥𝑣
1614, 2, 15nfbr 5142 . . . . . . . . 9 𝑥 𝑢𝑅𝑣
1716nfn 1858 . . . . . . . 8 𝑥 ¬ 𝑢𝑅𝑣
1813, 17nfralw 3280 . . . . . . 7 𝑥𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣
1918, 13nfriota 7323 . . . . . 6 𝑥(𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
207, 19nfmpt 5193 . . . . 5 𝑥( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2120nfrecs 8302 . . . 4 𝑥recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)))
22 nfcv 2895 . . . . . . . 8 𝑥𝑎
2321, 22nfima 6023 . . . . . . 7 𝑥(recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)
24 nfcv 2895 . . . . . . . 8 𝑥𝑧
25 nfcv 2895 . . . . . . . 8 𝑥𝑡
2624, 2, 25nfbr 5142 . . . . . . 7 𝑥 𝑧𝑅𝑡
2723, 26nfralw 3280 . . . . . 6 𝑥𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡
283, 27nfrexw 3281 . . . . 5 𝑥𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡
29 nfcv 2895 . . . . 5 𝑥On
3028, 29nfrabw 3433 . . . 4 𝑥{𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}
3121, 30nfres 5936 . . 3 𝑥(recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡})
32 nfcv 2895 . . 3 𝑥
336, 31, 32nfif 4507 . 2 𝑥if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑎 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑎)𝑧𝑅𝑡}), ∅)
341, 33nfcxfr 2893 1 𝑥OrdIso(𝑅, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wnfc 2880  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  c0 4282  ifcif 4476   class class class wbr 5095  cmpt 5176   Se wse 5572   We wwe 5573  ran crn 5622  cres 5623  cima 5624  Oncon0 6313  crio 7310  recscrecs 8298  OrdIsocoi 9404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-iota 6444  df-fv 6496  df-riota 7311  df-ov 7357  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-oi 9405
This theorem is referenced by:  hsmexlem2  10327
  Copyright terms: Public domain W3C validator