MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oi0 Structured version   Visualization version   GIF version

Theorem oi0 9488
Description: Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1 𝐹 = OrdIso(𝑅, 𝐴)
Assertion
Ref Expression
oi0 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 = ∅)

Proof of Theorem oi0
Dummy variables 𝑢 𝑡 𝑣 𝑥 𝑗 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oicl.1 . . 3 𝐹 = OrdIso(𝑅, 𝐴)
2 df-oi 9470 . . 3 OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅)
31, 2eqtri 2753 . 2 𝐹 = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅)
4 iffalse 4500 . 2 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) = ∅)
53, 4eqtrid 2777 1 (¬ (𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  c0 4299  ifcif 4491   class class class wbr 5110  cmpt 5191   Se wse 5592   We wwe 5593  ran crn 5642  cres 5643  cima 5644  Oncon0 6335  crio 7346  recscrecs 8342  OrdIsocoi 9469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-if 4492  df-oi 9470
This theorem is referenced by:  oicl  9489  oif  9490  oiexg  9495
  Copyright terms: Public domain W3C validator