![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oi0 | Structured version Visualization version GIF version |
Description: Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
oicl.1 | ⊢ 𝐹 = OrdIso(𝑅, 𝐴) |
Ref | Expression |
---|---|
oi0 | ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oicl.1 | . . 3 ⊢ 𝐹 = OrdIso(𝑅, 𝐴) | |
2 | df-oi 9549 | . . 3 ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) | |
3 | 1, 2 | eqtri 2753 | . 2 ⊢ 𝐹 = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) |
4 | iffalse 4541 | . 2 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) = ∅) | |
5 | 3, 4 | eqtrid 2777 | 1 ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∀wral 3050 ∃wrex 3059 {crab 3418 Vcvv 3461 ∅c0 4324 ifcif 4532 class class class wbr 5152 ↦ cmpt 5235 Se wse 5634 We wwe 5635 ran crn 5682 ↾ cres 5683 “ cima 5684 Oncon0 6375 ℩crio 7378 recscrecs 8399 OrdIsocoi 9548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-if 4533 df-oi 9549 |
This theorem is referenced by: oicl 9568 oif 9569 oiexg 9574 |
Copyright terms: Public domain | W3C validator |