| Metamath
Proof Explorer Theorem List (p. 96 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | infglb 9501* | An infimum is the greatest lower bound. See also infcl 9499 and inflb 9500. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ inf(𝐵, 𝐴, 𝑅)𝑅𝐶) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) | ||
| Theorem | infglbb 9502* | Bidirectional form of infglb 9501. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → (inf(𝐵, 𝐴, 𝑅)𝑅𝐶 ↔ ∃𝑧 ∈ 𝐵 𝑧𝑅𝐶)) | ||
| Theorem | infnlb 9503* | A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝐶) → ¬ inf(𝐵, 𝐴, 𝑅)𝑅𝐶)) | ||
| Theorem | infssd 9504* | Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ⊆ 𝐵) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ¬ inf(𝐶, 𝐴, 𝑅)𝑅inf(𝐵, 𝐴, 𝑅)) | ||
| Theorem | infex 9505 | An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
| ⊢ 𝑅 Or 𝐴 ⇒ ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V | ||
| Theorem | infmin 9506* | The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) ⇒ ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) | ||
| Theorem | infmo 9507* | Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
| Theorem | infeu 9508* | An infimum is unique. (Contributed by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
| Theorem | fimin2g 9509* | A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | ||
| Theorem | fiming 9510* | A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) | ||
| Theorem | fiinfg 9511* | Lemma showing existence and closure of infimum of a finite set. (Contributed by AV, 6-Oct-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦))) | ||
| Theorem | fiinf2g 9512* | A finite set satisfies the conditions to have an infimum. (Contributed by AV, 6-Oct-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
| Theorem | fiinfcl 9513 | A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) | ||
| Theorem | infltoreq 9514 | The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) ⇒ ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) | ||
| Theorem | infpr 9515 | The infimum of a pair. (Contributed by AV, 4-Sep-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶)) | ||
| Theorem | infsupprpr 9516 | The infimum of a proper pair is less than the supremum of this pair. (Contributed by AV, 13-Mar-2023.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ 𝐶)) → inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅)) | ||
| Theorem | infsn 9517 | The infimum of a singleton. (Contributed by NM, 2-Oct-2007.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝐵}, 𝐴, 𝑅) = 𝐵) | ||
| Theorem | inf00 9518 | The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ inf(𝐵, ∅, 𝑅) = ∅ | ||
| Theorem | infempty 9519* | The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.) |
| ⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) | ||
| Theorem | infiso 9520* | Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.) |
| ⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) | ||
| Syntax | coi 9521 | Extend class definition to include the canonical order isomorphism to an ordinal. |
| class OrdIso(𝑅, 𝐴) | ||
| Definition | df-oi 9522* | Define the canonical order isomorphism from the well-order 𝑅 on 𝐴 to an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) | ||
| Theorem | dfoi 9523* | Rewrite df-oi 9522 with abbreviations. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) | ||
| Theorem | oieq1 9524 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ (𝑅 = 𝑆 → OrdIso(𝑅, 𝐴) = OrdIso(𝑆, 𝐴)) | ||
| Theorem | oieq2 9525 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ (𝐴 = 𝐵 → OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐵)) | ||
| Theorem | nfoi 9526 | Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥OrdIso(𝑅, 𝐴) | ||
| Theorem | ordiso2 9527 | Generalize ordiso 9528 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | ordiso 9528* | Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) | ||
| Theorem | ordtypecbv 9529* | Lemma for ordtype 9544. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) ⇒ ⊢ recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹 | ||
| Theorem | ordtypelem1 9530* | Lemma for ordtype 9544. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) | ||
| Theorem | ordtypelem2 9531* | Lemma for ordtype 9544. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → Ord 𝑇) | ||
| Theorem | ordtypelem3 9532* | Lemma for ordtype 9544. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑀) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) | ||
| Theorem | ordtypelem4 9533* | Lemma for ordtype 9544. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) | ||
| Theorem | ordtypelem5 9534* | Lemma for ordtype 9544. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) | ||
| Theorem | ordtypelem6 9535* | Lemma for ordtype 9544. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ 𝑀 → (𝑂‘𝑁)𝑅(𝑂‘𝑀))) | ||
| Theorem | ordtypelem7 9536* | Lemma for ordtype 9544. ran 𝑂 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (((𝜑 ∧ 𝑁 ∈ 𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝑂)) | ||
| Theorem | ordtypelem8 9537* | Lemma for ordtype 9544. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) | ||
| Theorem | ordtypelem9 9538* | Lemma for ordtype 9544. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 9542 implies that either ran 𝑂 ⊆ 𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.) (Revised by AV, 28-Jul-2024.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑂 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
| Theorem | ordtypelem10 9539* | Lemma for ordtype 9544. Using ax-rep 5249, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
| Theorem | oi0 9540 | Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) | ||
| Theorem | oicl 9541 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ Ord dom 𝐹 | ||
| Theorem | oif 9542 | The order isomorphism of the well-order 𝑅 on 𝐴 is a function. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ 𝐹:dom 𝐹⟶𝐴 | ||
| Theorem | oiiso2 9543 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism onto ran 𝑂 (which is a subset of 𝐴 by oif 9542). (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, ran 𝐹)) | ||
| Theorem | ordtype 9544 | For any set-like well-ordered class, there is an isomorphic ordinal number called its order type. (Contributed by Jeff Hankins, 17-Oct-2009.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
| Theorem | oiiniseg 9545 | ran 𝐹 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑁 ∈ 𝐴 ∧ 𝑀 ∈ dom 𝐹)) → ((𝐹‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝐹)) | ||
| Theorem | ordtype2 9546 | For any set-like well-ordered class, if the order isomorphism exists (is a set), then it maps some ordinal onto 𝐴 isomorphically. Otherwise, 𝐹 is a proper class, which implies that either ran 𝐹 ⊆ 𝐴 is a proper class or dom 𝐹 = On. This weak version of ordtype 9544 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
| Theorem | oiexg 9547 | The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) | ||
| Theorem | oion 9548 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 23-May-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ On) | ||
| Theorem | oiiso 9549 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
| Theorem | oien 9550 | The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) | ||
| Theorem | oieu 9551 | Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ((Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹))) | ||
| Theorem | oismo 9552 | When 𝐴 is a subclass of On, 𝐹 is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of 𝐴). The proof avoids ax-rep 5249 (the second statement is trivial under ax-rep 5249). (Contributed by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐹 = OrdIso( E , 𝐴) ⇒ ⊢ (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴)) | ||
| Theorem | oiid 9553 | The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
| ⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | ||
| Theorem | hartogslem1 9554* | Lemma for hartogs 9556. (Contributed by Mario Carneiro, 14-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) | ||
| Theorem | hartogslem2 9555* | Lemma for hartogs 9556. (Contributed by Mario Carneiro, 14-Jan-2013.) |
| ⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) | ||
| Theorem | hartogs 9556* | The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 9554 and hartogslem2 9555) proof can be given using the axiom of choice, see ondomon 10575. As its label indicates, this result is used to justify the definition of the Hartogs function df-har 9569. (Contributed by Jeff Hankins, 22-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) | ||
| Theorem | wofib 9557 | The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) ↔ (𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴)) | ||
| Theorem | wemaplem1 9558* | Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑄 ∈ 𝑊) → (𝑃𝑇𝑄 ↔ ∃𝑎 ∈ 𝐴 ((𝑃‘𝑎)𝑆(𝑄‘𝑎) ∧ ∀𝑏 ∈ 𝐴 (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑄‘𝑏))))) | ||
| Theorem | wemaplem2 9559* | Lemma for wemapso 9563. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑎 ∈ 𝐴) & ⊢ (𝜑 → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) & ⊢ (𝜑 → 𝑏 ∈ 𝐴) & ⊢ (𝜑 → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
| Theorem | wemaplem3 9560* | Lemma for wemapso 9563. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑃𝑇𝑋) & ⊢ (𝜑 → 𝑋𝑇𝑄) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
| Theorem | wemappo 9561* |
Construct lexicographic order on a function space based on a
well-ordering of the indices and a total ordering of the values.
Without totality on the values or least differing indices, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) → 𝑇 Po (𝐵 ↑m 𝐴)) | ||
| Theorem | wemapsolem 9562* | Lemma for wemapso 9563. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 ⊆ (𝐵 ↑m 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Or 𝐵) & ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) ∧ 𝑎 ≠ 𝑏)) → ∃𝑐 ∈ dom (𝑎 ∖ 𝑏)∀𝑑 ∈ dom (𝑎 ∖ 𝑏) ¬ 𝑑𝑅𝑐) ⇒ ⊢ (𝜑 → 𝑇 Or 𝑈) | ||
| Theorem | wemapso 9563* | Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐵 ↑m 𝐴)) | ||
| Theorem | wemapso2lem 9564* | Lemma for wemapso2 9565. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) ∧ 𝑍 ∈ 𝑊) → 𝑇 Or 𝑈) | ||
| Theorem | wemapso2 9565* | An alternative to having a well-order on 𝑅 in wemapso 9563 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) | ||
| Theorem | card2on 9566* | The alternate definition of the cardinal of a set given in cardval2 10003 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013.) |
| ⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On | ||
| Theorem | card2inf 9567* | The alternate definition of the cardinal of a set given in cardval2 10003 has the curious property that for non-numerable sets (for which ndmfv 6910 yields ∅), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) | ||
| Syntax | char 9568 | Class symbol for the Hartogs function. |
| class har | ||
| Definition | df-har 9569* |
Define the Hartogs function as mapping a set to the class of ordinals it
dominates. That class is an ordinal by hartogs 9556, which is used in
harf 9570.
The Hartogs number of a set is the least ordinal not dominated by that set. Theorem harval2 10009 proves that the Hartogs function actually gives the Hartogs number for well-orderable sets. The Hartogs number of an ordinal is its cardinal successor. This is proved for finite ordinal in harsucnn 10010. Traditionally, the Hartogs number of a set 𝑋 is written ℵ(𝑋), and its cardinal successor, 𝑋 +; we use functional notation for this, and cannot use the aleph symbol because it is taken for the enumerating function of the infinite initial ordinals df-aleph 9952. Some authors define the Hartogs number of a set to be the least *infinite* ordinal which does not inject into it, thus causing the range to consist only of alephs. We use the simpler definition where the value can be any successor cardinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥}) | ||
| Theorem | harf 9570 | Functionality of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ har:V⟶On | ||
| Theorem | harcl 9571 | Values of the Hartogs function are ordinals (closure of the Hartogs function in the ordinals). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ (har‘𝑋) ∈ On | ||
| Theorem | harval 9572* | Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | ||
| Theorem | elharval 9573 | The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9571, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) | ||
| Theorem | harndom 9574 | The Hartogs number of a set does not inject into that set. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ ¬ (har‘𝑋) ≼ 𝑋 | ||
| Theorem | harword 9575 | Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| ⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) | ||
| Syntax | cwdom 9576 | Class symbol for the weak dominance relation. |
| class ≼* | ||
| Definition | df-wdom 9577* | A set is weakly dominated by a "larger" set if the "larger" set can be mapped onto the "smaller" set or the smaller set is empty, or equivalently, if the smaller set can be placed into bijection with some partition of the larger set. Dominance (df-dom 8959) implies weak dominance (over ZF). The principle asserting the converse is known as the partition principle and is independent of ZF. Theorem fodom 10535 proves that the axiom of choice implies the partition principle (over ZF). It is not known whether the partition principle is equivalent to the axiom of choice (over ZF), although it is know to imply dependent choice. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | ||
| Theorem | relwdom 9578 | Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ Rel ≼* | ||
| Theorem | brwdom 9579* | Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ (𝑌 ∈ 𝑉 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | ||
| Theorem | brwdomi 9580* | Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝑋 ≼* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) | ||
| Theorem | brwdomn0 9581* | Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) | ||
| Theorem | 0wdom 9582 | Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) | ||
| Theorem | fowdom 9583 | An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) | ||
| Theorem | wdomref 9584 | Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) | ||
| Theorem | brwdom2 9585* | Alternate characterization of the weak dominance predicate which does not require special treatment of the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ (𝑌 ∈ 𝑉 → (𝑋 ≼* 𝑌 ↔ ∃𝑦 ∈ 𝒫 𝑌∃𝑧 𝑧:𝑦–onto→𝑋)) | ||
| Theorem | domwdom 9586 | Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| ⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) | ||
| Theorem | wdomtr 9587 | Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ ((𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍) → 𝑋 ≼* 𝑍) | ||
| Theorem | wdomen1 9588 | Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) | ||
| Theorem | wdomen2 9589 | Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) | ||
| Theorem | wdompwdom 9590 | Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) | ||
| Theorem | canthwdom 9591 | Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 9142, equivalent to canth 7357). (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ¬ 𝒫 𝐴 ≼* 𝐴 | ||
| Theorem | wdom2d 9592* | Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep 5249). (Contributed by Stefan O'Rear, 13-Feb-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* 𝐵) | ||
| Theorem | wdomd 9593* | Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* 𝐵) | ||
| Theorem | brwdom3 9594* | Condition for weak dominance with a condition reminiscent of wdomd 9593. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋 ≼* 𝑌 ↔ ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | ||
| Theorem | brwdom3i 9595* | Weak dominance implies existence of a covering function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
| ⊢ (𝑋 ≼* 𝑌 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) | ||
| Theorem | unwdomg 9596 | Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≼* (𝐵 ∪ 𝐷)) | ||
| Theorem | xpwdomg 9597 | Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)) | ||
| Theorem | wdomima2g 9598 | A set is weakly dominant over its image under any function. This version of wdomimag 9599 is stated so as to avoid ax-rep 5249. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ (𝐹 “ 𝐴) ∈ 𝑊) → (𝐹 “ 𝐴) ≼* 𝐴) | ||
| Theorem | wdomimag 9599 | A set is weakly dominant over its image under any function. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ≼* 𝐴) | ||
| Theorem | unxpwdom2 9600 | Lemma for unxpwdom 9601. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 × 𝐴) ≈ (𝐵 ∪ 𝐶) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |