Home | Metamath
Proof Explorer Theorem List (p. 96 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29259) |
Hilbert Space Explorer
(29260-30782) |
Users' Mathboxes
(30783-46465) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | frr1 9501 | Law of general well-founded recursion, part one. This theorem and the following two drop the partial order requirement from fpr1 8103, fpr2 8104, and fpr3 8105, which requires using the axiom of infinity (Contributed by Scott Fenton, 11-Sep-2023.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) | ||
Theorem | frr2 9502 | Law of general well-founded recursion, part two. Now we establish the value of 𝐹 within 𝐴. (Contributed by Scott Fenton, 11-Sep-2023.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) | ||
Theorem | frr3 9503* | Law of general well-founded recursion, part three. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in frr1 9501 and frr2 9502 is identical to 𝐹. (Contributed by Scott Fenton, 11-Sep-2023.) |
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) ⇒ ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | ||
Syntax | cr1 9504 | Extend class definition to include the cumulative hierarchy of sets function. |
class 𝑅1 | ||
Syntax | crnk 9505 | Extend class definition to include rank function. |
class rank | ||
Definition | df-r1 9506 | Define the cumulative hierarchy of sets function, using Takeuti and Zaring's notation (𝑅1). Starting with the empty set, this function builds up layers of sets where the next layer is the power set of the previous layer (and the union of previous layers when the argument is a limit ordinal). Using the Axiom of Regularity, we can show that any set whatsoever belongs to one of the layers of this hierarchy (see tz9.13 9533). Our definition expresses Definition 9.9 of [TakeutiZaring] p. 76 in a closed form, from which we derive the recursive definition as Theorems r10 9510, r1suc 9512, and r1lim 9514. Theorem r1val1 9528 shows a recursive definition that works for all values, and Theorems r1val2 9579 and r1val3 9580 show the value expressed in terms of rank. Other notations for this function are R with the argument as a subscript (Equation 3.1 of [BellMachover] p. 477), V with a subscript (Definition of [Enderton] p. 202), M with a subscript (Definition 15.19 of [Monk1] p. 113), the capital Greek letter psi (Definition of [Mendelson] p. 281), and bold-face R (Definition 2.1 of [Kunen] p. 95). (Contributed by NM, 2-Sep-2003.) |
⊢ 𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅) | ||
Definition | df-rank 9507* | Define the rank function. See rankval 9558, rankval2 9560, rankval3 9582, or rankval4 9609 its value. The rank is a kind of "inverse" of the cumulative hierarchy of sets function 𝑅1: given a set, it returns an ordinal number telling us the smallest layer of the hierarchy to which the set belongs. Based on Definition 9.14 of [TakeutiZaring] p. 79. Theorem rankid 9575 illustrates the "inverse" concept. Another nice theorem showing the relationship is rankr1a 9578. (Contributed by NM, 11-Oct-2003.) |
⊢ rank = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)}) | ||
Theorem | r1funlim 9508 | The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon 9509 avoids ax-rep 5213.) (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | ||
Theorem | r1fnon 9509 | The cumulative hierarchy of sets function is a function on the class of ordinal numbers. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
⊢ 𝑅1 Fn On | ||
Theorem | r10 9510 | Value of the cumulative hierarchy of sets function at ∅. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
⊢ (𝑅1‘∅) = ∅ | ||
Theorem | r1sucg 9511 | Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | ||
Theorem | r1suc 9512 | Value of the cumulative hierarchy of sets function at a successor ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 2-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
⊢ (𝐴 ∈ On → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | ||
Theorem | r1limg 9513* | Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ ((𝐴 ∈ dom 𝑅1 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) | ||
Theorem | r1lim 9514* | Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of [TakeutiZaring] p. 76. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥)) | ||
Theorem | r1fin 9515 | The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.) |
⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) | ||
Theorem | r1sdom 9516 | Each stage in the cumulative hierarchy is strictly larger than the last. (Contributed by Mario Carneiro, 19-Apr-2013.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → (𝑅1‘𝐵) ≺ (𝑅1‘𝐴)) | ||
Theorem | r111 9517 | The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013.) |
⊢ 𝑅1:On–1-1→V | ||
Theorem | r1tr 9518 | The cumulative hierarchy of sets is transitive. Lemma 7T of [Enderton] p. 202. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ Tr (𝑅1‘𝐴) | ||
Theorem | r1tr2 9519 | The union of a cumulative hierarchy of sets at ordinal 𝐴 is a subset of the hierarchy at 𝐴. JFM CLASSES1 th. 40. (Contributed by FL, 20-Apr-2011.) |
⊢ ∪ (𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) | ||
Theorem | r1ordg 9520 | Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.) |
⊢ (𝐵 ∈ dom 𝑅1 → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) | ||
Theorem | r1ord3g 9521 | Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
⊢ ((𝐴 ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | ||
Theorem | r1ord 9522 | Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 8-Sep-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ∈ (𝑅1‘𝐵))) | ||
Theorem | r1ord2 9523 | Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of [TakeutiZaring] p. 77. (Contributed by NM, 22-Sep-2003.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | ||
Theorem | r1ord3 9524 | Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (𝑅1‘𝐴) ⊆ (𝑅1‘𝐵))) | ||
Theorem | r1sssuc 9525 | The value of the cumulative hierarchy of sets function is a subset of its value at the successor. JFM CLASSES1 Th. 39. (Contributed by FL, 20-Apr-2011.) |
⊢ (𝐴 ∈ On → (𝑅1‘𝐴) ⊆ (𝑅1‘suc 𝐴)) | ||
Theorem | r1pwss 9526 | Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝒫 𝐴 ⊆ (𝑅1‘𝐵)) | ||
Theorem | r1sscl 9527 | Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ ((𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐶 ⊆ 𝐴) → 𝐶 ∈ (𝑅1‘𝐵)) | ||
Theorem | r1val1 9528* | The value of the cumulative hierarchy of sets function expressed recursively. Theorem 7Q of [Enderton] p. 202. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 (𝑅1‘𝑥)) | ||
Theorem | tz9.12lem1 9529* | Lemma for tz9.12 9532. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) ⇒ ⊢ (𝐹 “ 𝐴) ⊆ On | ||
Theorem | tz9.12lem2 9530* | Lemma for tz9.12 9532. (Contributed by NM, 22-Sep-2003.) |
⊢ 𝐴 ∈ V & ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) ⇒ ⊢ suc ∪ (𝐹 “ 𝐴) ∈ On | ||
Theorem | tz9.12lem3 9531* | Lemma for tz9.12 9532. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐹 = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → 𝐴 ∈ (𝑅1‘suc suc ∪ (𝐹 “ 𝐴))) | ||
Theorem | tz9.12 9532* | A set is well-founded if all of its elements are well-founded. Proposition 9.12 of [TakeutiZaring] p. 78. The main proof consists of tz9.12lem1 9529 through tz9.12lem3 9531. (Contributed by NM, 22-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) | ||
Theorem | tz9.13 9533* | Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) | ||
Theorem | tz9.13g 9534* | Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13 9533 expresses the class existence requirement as an antecedent. (Contributed by NM, 4-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥)) | ||
Theorem | rankwflemb 9535* | Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | ||
Theorem | rankf 9536 | The domain and range of the rank function. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 12-Sep-2013.) |
⊢ rank:∪ (𝑅1 “ On)⟶On | ||
Theorem | rankon 9537 | The rank of a set is an ordinal number. Proposition 9.15(1) of [TakeutiZaring] p. 79. (Contributed by NM, 5-Oct-2003.) (Revised by Mario Carneiro, 12-Sep-2013.) |
⊢ (rank‘𝐴) ∈ On | ||
Theorem | r1elwf 9538 | Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | rankvalb 9539* | Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9558 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | ||
Theorem | rankr1ai 9540 | One direction of rankr1a 9578. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ (𝑅1‘𝐵) → (rank‘𝐴) ∈ 𝐵) | ||
Theorem | rankvaln 9541 | Value of the rank function at a non-well-founded set. (The antecedent is always false under Foundation, by unir1 9555, unless 𝐴 is a proper class.) (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 10-Sep-2013.) |
⊢ (¬ 𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∅) | ||
Theorem | rankidb 9542 | Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | ||
Theorem | rankdmr1 9543 | A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (rank‘𝐴) ∈ dom 𝑅1 | ||
Theorem | rankr1ag 9544 | A version of rankr1a 9578 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) | ||
Theorem | rankr1bg 9545 | A relationship between rank and 𝑅1. See rankr1ag 9544 for the membership version. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘𝐵) ↔ (rank‘𝐴) ⊆ 𝐵)) | ||
Theorem | r1rankidb 9546 | Any set is a subset of the hierarchy of its rank. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | ||
Theorem | r1elssi 9547 | The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. One direction of r1elss 9548 that doesn't need 𝐴 to be a set. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) | ||
Theorem | r1elss 9548 | The range of the 𝑅1 function is transitive. Lemma 2.10 of [Kunen] p. 97. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝐴 ⊆ ∪ (𝑅1 “ On)) | ||
Theorem | pwwf 9549 | A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | sswf 9550 | A subset of a well-founded set is well-founded. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | snwf 9551 | A singleton is well-founded if its element is. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝐴} ∈ ∪ (𝑅1 “ On)) | ||
Theorem | unwf 9552 | A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) ↔ (𝐴 ∪ 𝐵) ∈ ∪ (𝑅1 “ On)) | ||
Theorem | prwf 9553 | An unordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → {𝐴, 𝐵} ∈ ∪ (𝑅1 “ On)) | ||
Theorem | opwf 9554 | An ordered pair is well-founded if its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → 〈𝐴, 𝐵〉 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | unir1 9555 | The cumulative hierarchy of sets covers the universe. Proposition 4.45 (b) to (a) of [Mendelson] p. 281. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 8-Jun-2013.) |
⊢ ∪ (𝑅1 “ On) = V | ||
Theorem | jech9.3 9556 | Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V | ||
Theorem | rankwflem 9557* | Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13g 9534 is useful in proofs of theorems about the rank function. (Contributed by NM, 4-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | ||
Theorem | rankval 9558* | Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). (Contributed by NM, 24-Sep-2003.) (Revised by Mario Carneiro, 10-Sep-2013.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} | ||
Theorem | rankvalg 9559* | Value of the rank function. Definition 9.14 of [TakeutiZaring] p. 79 (proved as a theorem from our definition). This variant of rankval 9558 expresses the class existence requirement as an antecedent instead of a hypothesis. (Contributed by NM, 5-Oct-2003.) |
⊢ (𝐴 ∈ 𝑉 → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | ||
Theorem | rankval2 9560* | Value of an alternate definition of the rank function. Definition of [BellMachover] p. 478. (Contributed by NM, 8-Oct-2003.) |
⊢ (𝐴 ∈ 𝐵 → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)}) | ||
Theorem | uniwf 9561 | A union is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝐴 ∈ ∪ (𝑅1 “ On)) | ||
Theorem | rankr1clem 9562 | Lemma for rankr1c 9563. (Contributed by NM, 6-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (¬ 𝐴 ∈ (𝑅1‘𝐵) ↔ 𝐵 ⊆ (rank‘𝐴))) | ||
Theorem | rankr1c 9563 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))) | ||
Theorem | rankidn 9564 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴))) | ||
Theorem | rankpwi 9565 | The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 3-Jun-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴)) | ||
Theorem | rankelb 9566 | The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵))) | ||
Theorem | wfelirr 9567 | A well-founded set is not a member of itself. This proof does not require the axiom of regularity, unlike elirr 9317. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ¬ 𝐴 ∈ 𝐴) | ||
Theorem | rankval3b 9568* | The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥}) | ||
Theorem | ranksnb 9569 | The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘{𝐴}) = suc (rank‘𝐴)) | ||
Theorem | rankonidlem 9570 | Lemma for rankonid 9571. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.) |
⊢ (𝐴 ∈ dom 𝑅1 → (𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = 𝐴)) | ||
Theorem | rankonid 9571 | The rank of an ordinal number is itself. Proposition 9.18 of [TakeutiZaring] p. 79 and its converse. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴) | ||
Theorem | onwf 9572 | The ordinals are all well-founded. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ On ⊆ ∪ (𝑅1 “ On) | ||
Theorem | onssr1 9573 | Initial segments of the ordinals are contained in initial segments of the cumulative hierarchy. (Contributed by FL, 20-Apr-2011.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) | ||
Theorem | rankr1g 9574 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by NM, 6-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)))) | ||
Theorem | rankid 9575 | Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) | ||
Theorem | rankr1 9576 | A relationship between the rank function and the cumulative hierarchy of sets function 𝑅1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by NM, 6-Oct-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐴 ∈ (𝑅1‘suc 𝐵))) | ||
Theorem | ssrankr1 9577 | A relationship between an ordinal number less than or equal to a rank, and the cumulative hierarchy of sets 𝑅1. Proposition 9.15(3) of [TakeutiZaring] p. 79. (Contributed by NM, 8-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (𝐵 ⊆ (rank‘𝐴) ↔ ¬ 𝐴 ∈ (𝑅1‘𝐵))) | ||
Theorem | rankr1a 9578 | A relationship between rank and 𝑅1, clearly equivalent to ssrankr1 9577 and friends through trichotomy, but in Raph's opinion considerably more intuitive. See rankr1b 9606 for the subset version. (Contributed by Raph Levien, 29-May-2004.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) | ||
Theorem | r1val2 9579* | The value of the cumulative hierarchy of sets function expressed in terms of rank. Definition 15.19 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) |
⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = {𝑥 ∣ (rank‘𝑥) ∈ 𝐴}) | ||
Theorem | r1val3 9580* | The value of the cumulative hierarchy of sets function expressed in terms of rank. Theorem 15.18 of [Monk1] p. 113. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐴 ∈ On → (𝑅1‘𝐴) = ∪ 𝑥 ∈ 𝐴 𝒫 {𝑦 ∣ (rank‘𝑦) ∈ 𝑥}) | ||
Theorem | rankel 9581 | The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 → (rank‘𝐴) ∈ (rank‘𝐵)) | ||
Theorem | rankval3 9582* | The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥} | ||
Theorem | bndrank 9583* | Any class whose elements have bounded rank is a set. Proposition 9.19 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
⊢ (∃𝑥 ∈ On ∀𝑦 ∈ 𝐴 (rank‘𝑦) ⊆ 𝑥 → 𝐴 ∈ V) | ||
Theorem | unbndrank 9584* | The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.) |
⊢ (¬ 𝐴 ∈ V → ∀𝑥 ∈ On ∃𝑦 ∈ 𝐴 𝑥 ∈ (rank‘𝑦)) | ||
Theorem | rankpw 9585 | The rank of a power set. Part of Exercise 30 of [Enderton] p. 207. (Contributed by NM, 22-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘𝒫 𝐴) = suc (rank‘𝐴) | ||
Theorem | ranklim 9586 | The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.) |
⊢ (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵)) | ||
Theorem | r1pw 9587 | A stronger property of 𝑅1 than rankpw 9585. The latter merely proves that 𝑅1 of the successor is a power set, but here we prove that if 𝐴 is in the cumulative hierarchy, then 𝒫 𝐴 is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) | ||
Theorem | r1pwALT 9588 | Alternate shorter proof of r1pw 9587 based on the additional axioms ax-reg 9312 and ax-inf2 9360. (Contributed by Raph Levien, 29-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐵 ∈ On → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc 𝐵))) | ||
Theorem | r1pwcl 9589 | The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
⊢ (Lim 𝐵 → (𝐴 ∈ (𝑅1‘𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1‘𝐵))) | ||
Theorem | rankssb 9590 | The subset relation is inherited by the rank function. Exercise 1 of [TakeutiZaring] p. 80. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ (𝐵 ∈ ∪ (𝑅1 “ On) → (𝐴 ⊆ 𝐵 → (rank‘𝐴) ⊆ (rank‘𝐵))) | ||
Theorem | rankss 9591 | The subset relation is inherited by the rank function. Exercise 1 of [TakeutiZaring] p. 80. (Contributed by NM, 25-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 → (rank‘𝐴) ⊆ (rank‘𝐵)) | ||
Theorem | rankunb 9592 | The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))) | ||
Theorem | rankprb 9593 | The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))) | ||
Theorem | rankopb 9594 | The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by Mario Carneiro, 10-Jun-2013.) |
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘〈𝐴, 𝐵〉) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))) | ||
Theorem | rankuni2b 9595* | The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 8-Jun-2013.) |
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥)) | ||
Theorem | ranksn 9596 | The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by NM, 28-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘{𝐴}) = suc (rank‘𝐴) | ||
Theorem | rankuni2 9597* | The rank of a union. Part of Theorem 15.17(iv) of [Monk1] p. 112. (Contributed by NM, 30-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (rank‘∪ 𝐴) = ∪ 𝑥 ∈ 𝐴 (rank‘𝑥) | ||
Theorem | rankun 9598 | The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by NM, 26-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) | ||
Theorem | rankpr 9599 | The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by NM, 28-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) | ||
Theorem | rankop 9600 | The rank of an ordered pair. Part of Exercise 4 of [Kunen] p. 107. (Contributed by NM, 13-Sep-2006.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (rank‘〈𝐴, 𝐵〉) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |