Detailed syntax breakdown of Definition df-omnd
Step | Hyp | Ref
| Expression |
1 | | comnd 31302 |
. 2
class
oMnd |
2 | | vg |
. . . . . . . . 9
setvar 𝑔 |
3 | 2 | cv 1540 |
. . . . . . . 8
class 𝑔 |
4 | | ctos 18115 |
. . . . . . . 8
class
Toset |
5 | 3, 4 | wcel 2109 |
. . . . . . 7
wff 𝑔 ∈ Toset |
6 | | va |
. . . . . . . . . . . . 13
setvar 𝑎 |
7 | 6 | cv 1540 |
. . . . . . . . . . . 12
class 𝑎 |
8 | | vb |
. . . . . . . . . . . . 13
setvar 𝑏 |
9 | 8 | cv 1540 |
. . . . . . . . . . . 12
class 𝑏 |
10 | | vl |
. . . . . . . . . . . . 13
setvar 𝑙 |
11 | 10 | cv 1540 |
. . . . . . . . . . . 12
class 𝑙 |
12 | 7, 9, 11 | wbr 5078 |
. . . . . . . . . . 11
wff 𝑎𝑙𝑏 |
13 | | vc |
. . . . . . . . . . . . . 14
setvar 𝑐 |
14 | 13 | cv 1540 |
. . . . . . . . . . . . 13
class 𝑐 |
15 | | vp |
. . . . . . . . . . . . . 14
setvar 𝑝 |
16 | 15 | cv 1540 |
. . . . . . . . . . . . 13
class 𝑝 |
17 | 7, 14, 16 | co 7268 |
. . . . . . . . . . . 12
class (𝑎𝑝𝑐) |
18 | 9, 14, 16 | co 7268 |
. . . . . . . . . . . 12
class (𝑏𝑝𝑐) |
19 | 17, 18, 11 | wbr 5078 |
. . . . . . . . . . 11
wff (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐) |
20 | 12, 19 | wi 4 |
. . . . . . . . . 10
wff (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) |
21 | | vv |
. . . . . . . . . . 11
setvar 𝑣 |
22 | 21 | cv 1540 |
. . . . . . . . . 10
class 𝑣 |
23 | 20, 13, 22 | wral 3065 |
. . . . . . . . 9
wff
∀𝑐 ∈
𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) |
24 | 23, 8, 22 | wral 3065 |
. . . . . . . 8
wff
∀𝑏 ∈
𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) |
25 | 24, 6, 22 | wral 3065 |
. . . . . . 7
wff
∀𝑎 ∈
𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) |
26 | 5, 25 | wa 395 |
. . . . . 6
wff (𝑔 ∈ Toset ∧
∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) |
27 | | cple 16950 |
. . . . . . 7
class
le |
28 | 3, 27 | cfv 6430 |
. . . . . 6
class
(le‘𝑔) |
29 | 26, 10, 28 | wsbc 3719 |
. . . . 5
wff
[(le‘𝑔)
/ 𝑙](𝑔 ∈ Toset ∧
∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) |
30 | | cplusg 16943 |
. . . . . 6
class
+g |
31 | 3, 30 | cfv 6430 |
. . . . 5
class
(+g‘𝑔) |
32 | 29, 15, 31 | wsbc 3719 |
. . . 4
wff
[(+g‘𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) |
33 | | cbs 16893 |
. . . . 5
class
Base |
34 | 3, 33 | cfv 6430 |
. . . 4
class
(Base‘𝑔) |
35 | 32, 21, 34 | wsbc 3719 |
. . 3
wff
[(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) |
36 | | cmnd 18366 |
. . 3
class
Mnd |
37 | 35, 2, 36 | crab 3069 |
. 2
class {𝑔 ∈ Mnd ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))} |
38 | 1, 37 | wceq 1541 |
1
wff oMnd =
{𝑔 ∈ Mnd ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))} |