| Metamath
Proof Explorer Theorem List (p. 323 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hstri 32201* | Hilbert space admits a strong set of Hilbert-space-valued states (CH-states). Theorem in [Mayet3] p. 10. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ CHStates ((normℎ‘(𝑓‘𝐴)) = 1 → (normℎ‘(𝑓‘𝐵)) = 1) → 𝐴 ⊆ 𝐵) | ||
| Theorem | hstrbi 32202* | Strong CH-state theorem (bidirectional version). Theorem in [Mayet3] p. 10 and its converse. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ CHStates ((normℎ‘(𝑓‘𝐴)) = 1 → (normℎ‘(𝑓‘𝐵)) = 1) ↔ 𝐴 ⊆ 𝐵) | ||
| Theorem | largei 32203* | A Hilbert lattice admits a largei set of states. Remark in [Mayet] p. 370. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (¬ 𝐴 = 0ℋ ↔ ∃𝑓 ∈ States (𝑓‘𝐴) = 1) | ||
| Theorem | jplem1 32204 | Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (𝑢 ∈ 𝐴 ↔ ((normℎ‘((projℎ‘𝐴)‘𝑢))↑2) = 1)) | ||
| Theorem | jplem2 32205* | Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (𝑢 ∈ 𝐴 ↔ (𝑆‘𝐴) = 1)) | ||
| Theorem | jpi 32206* | The function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a Jauch-Piron state. Remark in [Mayet] p. 370. (See strlem3a 32188 for the proof that 𝑆 is a state.) (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (((𝑆‘𝐴) = 1 ∧ (𝑆‘𝐵) = 1) ↔ (𝑆‘(𝐴 ∩ 𝐵)) = 1)) | ||
| Theorem | golem1 32207 | Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) & ⊢ 𝑅 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) & ⊢ 𝑆 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) ⇒ ⊢ (𝑓 ∈ States → (((𝑓‘𝐹) + (𝑓‘𝐺)) + (𝑓‘𝐻)) = (((𝑓‘𝐷) + (𝑓‘𝑅)) + (𝑓‘𝑆))) | ||
| Theorem | golem2 32208 | Lemma for Godowski's equation. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) & ⊢ 𝑅 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) & ⊢ 𝑆 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) ⇒ ⊢ (𝑓 ∈ States → ((𝑓‘((𝐹 ∩ 𝐺) ∩ 𝐻)) = 1 → (𝑓‘𝐷) = 1)) | ||
| Theorem | goeqi 32209 | Godowski's equation, shown here as a variant equivalent to Equation SF of [Godowski] p. 730. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) ⇒ ⊢ ((𝐹 ∩ 𝐺) ∩ 𝐻) ⊆ 𝐷 | ||
| Theorem | stcltr1i 32210* | Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) | ||
| Theorem | stcltr2i 32211* | Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) | ||
| Theorem | stcltrlem1 32212* | Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → ((𝑆‘𝐵) = 1 → (𝑆‘((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) = 1)) | ||
| Theorem | stcltrlem2 32213* | Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) | ||
| Theorem | stcltrthi 32214* | Theorem for classically strong set of states. If there exists a "classically strong set of states" on lattice Cℋ (or actually any ortholattice, which would have an identical proof), then any two elements of the lattice commute, i.e., the lattice is distributive. (Proof due to Mladen Pavicic.) Theorem 3.3 of [MegPav2000] p. 2344. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∃𝑠 ∈ States ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑠‘𝑥) = 1 → (𝑠‘𝑦) = 1) → 𝑥 ⊆ 𝑦) ⇒ ⊢ 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) | ||
| Definition | df-cv 32215* | Define the covers relation (on the Hilbert lattice). Definition 3.2.18 of [PtakPulmannova] p. 68, whose notation we use. Ptak/Pulmannova's notation 𝐴 ⋖ℋ 𝐵 is read "𝐵 covers 𝐴 " or "𝐴 is covered by 𝐵 " , and it means that 𝐵 is larger than 𝐴 and there is nothing in between. See cvbr 32218 and cvbr2 32219 for membership relations. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ ⋖ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈ Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)))} | ||
| Definition | df-md 32216* | Define the modular pair relation (on the Hilbert lattice). Definition 1.1 of [MaedaMaeda] p. 1, who use the notation (x,y)M for "the ordered pair <x,y> is a modular pair." See mdbr 32230 for membership relation. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝑀ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀𝑧 ∈ Cℋ (𝑧 ⊆ 𝑦 → ((𝑧 ∨ℋ 𝑥) ∩ 𝑦) = (𝑧 ∨ℋ (𝑥 ∩ 𝑦))))} | ||
| Definition | df-dmd 32217* | Define the dual modular pair relation (on the Hilbert lattice). Definition 1.1 of [MaedaMaeda] p. 1, who use the notation (x,y)M* for "the ordered pair <x,y> is a dual modular pair." See dmdbr 32235 for membership relation. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝑀ℋ* = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀𝑧 ∈ Cℋ (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))))} | ||
| Theorem | cvbr 32218* | Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | ||
| Theorem | cvbr2 32219* | Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)))) | ||
| Theorem | cvcon3 32220 | Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) | ||
| Theorem | cvpss 32221 | The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | ||
| Theorem | cvnbtwn 32222 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | ||
| Theorem | cvnbtwn2 32223 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) | ||
| Theorem | cvnbtwn3 32224 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) | ||
| Theorem | cvnbtwn4 32225 | The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) | ||
| Theorem | cvnsym 32226 | The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) | ||
| Theorem | cvnref 32227 | The covers relation is not reflexive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) | ||
| Theorem | cvntr 32228 | The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) | ||
| Theorem | spansncv2 32229 | Hilbert space has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (¬ (span‘{𝐵}) ⊆ 𝐴 → 𝐴 ⋖ℋ (𝐴 ∨ℋ (span‘{𝐵})))) | ||
| Theorem | mdbr 32230* | Binary relation expressing 〈𝐴, 𝐵〉 is a modular pair. Definition 1.1 of [MaedaMaeda] p. 1. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | ||
| Theorem | mdi 32231 | Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) | ||
| Theorem | mdbr2 32232* | Binary relation expressing the modular pair property. This version has a weaker constraint than mdbr 32230. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | ||
| Theorem | mdbr3 32233* | Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) | ||
| Theorem | mdbr4 32234* | Binary relation expressing the modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) | ||
| Theorem | dmdbr 32235* | Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) | ||
| Theorem | dmdmd 32236 | The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of [MaedaMaeda] p. 130. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ (⊥‘𝐵))) | ||
| Theorem | mddmd 32237 | The modular pair property expressed in terms of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵))) | ||
| Theorem | dmdi 32238 | Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) | ||
| Theorem | dmdbr2 32239* | Binary relation expressing the dual modular pair property. This version has a weaker constraint than dmdbr 32235. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵)))) | ||
| Theorem | dmdi2 32240 | Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) | ||
| Theorem | dmdbr3 32241* | Binary relation expressing the dual modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)))) | ||
| Theorem | dmdbr4 32242* | Binary relation expressing the dual modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
| Theorem | dmdi4 32243 | Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → ((𝐶 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝐶 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
| Theorem | dmdbr5 32244* | Binary relation expressing the dual modular pair property. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)))) | ||
| Theorem | mddmd2 32245* | Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ 𝐴 𝑀ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ 𝐴 𝑀ℋ* 𝑥)) | ||
| Theorem | mdsl0 32246 | A sublattice condition that transfers the modular pair property. Exercise 12 of [Kalmbach] p. 103. Also Lemma 1.5.3 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ (𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ )) → ((((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧ 𝐴 𝑀ℋ 𝐵) → 𝐶 𝑀ℋ 𝐷)) | ||
| Theorem | ssmd1 32247 | Ordering implies the modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | ssmd2 32248 | Ordering implies the modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐵 𝑀ℋ 𝐴) | ||
| Theorem | ssdmd1 32249 | Ordering implies the dual modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ* 𝐵) | ||
| Theorem | ssdmd2 32250 | Ordering implies the dual modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴)) | ||
| Theorem | dmdsl3 32251 | Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) | ||
| Theorem | mdsl3 32252 | Sublattice mapping for a modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = 𝐶) | ||
| Theorem | mdslle1i 32253 | Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐶 ⊆ 𝐷 ↔ (𝐶 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵))) | ||
| Theorem | mdslle2i 32254 | Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → (𝐶 ⊆ 𝐷 ↔ (𝐶 ∨ℋ 𝐴) ⊆ (𝐷 ∨ℋ 𝐴))) | ||
| Theorem | mdslj1i 32255 | Join preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∨ℋ 𝐷) ∩ 𝐵) = ((𝐶 ∩ 𝐵) ∨ℋ (𝐷 ∩ 𝐵))) | ||
| Theorem | mdslj2i 32256 | Meet preservation of the reverse mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → ((𝐶 ∩ 𝐷) ∨ℋ 𝐴) = ((𝐶 ∨ℋ 𝐴) ∩ (𝐷 ∨ℋ 𝐴))) | ||
| Theorem | mdsl1i 32257* | If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | mdsl2i 32258* | If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 28-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) | ||
| Theorem | mdsl2bi 32259* | If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) | ||
| Theorem | cvmdi 32260 | The covering property implies the modular pair property. Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 16-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | mdslmd1lem1 32261 | Lemma for mdslmd1i 32265. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (((𝑅 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑅 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑅 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))) → ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑅 ∧ 𝑅 ⊆ (𝐷 ∩ 𝐵)) → ((𝑅 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑅 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) | ||
| Theorem | mdslmd1lem2 32262 | Lemma for mdslmd1i 32265. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (((𝑅 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑅 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑅 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (((𝐶 ∩ 𝐷) ⊆ 𝑅 ∧ 𝑅 ⊆ 𝐷) → ((𝑅 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑅 ∨ℋ (𝐶 ∩ 𝐷))))) | ||
| Theorem | mdslmd1lem3 32263* | Lemma for mdslmd1i 32265. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝑥 ∈ Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (((𝑥 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))) → ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐷 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) | ||
| Theorem | mdslmd1lem4 32264* | Lemma for mdslmd1i 32265. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝑥 ∈ Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (((𝑥 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (((𝐶 ∩ 𝐷) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐷) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) | ||
| Theorem | mdslmd1i 32265 | Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (meet version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵))) | ||
| Theorem | mdslmd2i 32266 | Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (join version). (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∨ℋ 𝐴) 𝑀ℋ (𝐷 ∨ℋ 𝐴))) | ||
| Theorem | mdsldmd1i 32267 | Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 𝑀ℋ* 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ* (𝐷 ∩ 𝐵))) | ||
| Theorem | mdslmd3i 32268 | Modular pair conditions that imply the modular pair property in a sublattice. Lemma 1.5.1 of [MaedaMaeda] p. 2. (Contributed by NM, 23-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) 𝑀ℋ 𝐶) ∧ ((𝐴 ∩ 𝐶) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐴)) → 𝐷 𝑀ℋ (𝐵 ∩ 𝐶)) | ||
| Theorem | mdslmd4i 32269 | Modular pair condition that implies the modular pair property in a sublattice. Lemma 1.5.2 of [MaedaMaeda] p. 2. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → 𝐶 𝑀ℋ 𝐷) | ||
| Theorem | csmdsymi 32270* | Cross-symmetry implies M-symmetry. Theorem 1.9.1 of [MaedaMaeda] p. 3. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((∀𝑐 ∈ Cℋ (𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐) ∧ 𝐴 𝑀ℋ 𝐵) → 𝐵 𝑀ℋ 𝐴) | ||
| Theorem | mdexchi 32271 | An exchange lemma for modular pairs. Lemma 1.6 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐶 ∨ℋ 𝐴) 𝑀ℋ 𝐵 ∧ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐴 ∩ 𝐵))) | ||
| Theorem | cvmd 32272 | The covering property implies the modular pair property. Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵) → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | cvdmd 32273 | The covering property implies the dual modular pair property. Lemma 7.5.2 of [MaedaMaeda] p. 31. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐵 ⋖ℋ (𝐴 ∨ℋ 𝐵)) → 𝐴 𝑀ℋ* 𝐵) | ||
| Definition | df-at 32274 | Define the set of atoms in a Hilbert lattice. An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. Definition of atom in [Kalmbach] p. 15. See ela 32275 and elat2 32276 for membership relations. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | ||
| Theorem | ela 32275 | Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | ||
| Theorem | elat2 32276* | Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) | ||
| Theorem | elatcv0 32277 | A Hilbert lattice element is an atom iff it covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → (𝐴 ∈ HAtoms ↔ 0ℋ ⋖ℋ 𝐴)) | ||
| Theorem | atcv0 32278 | An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) | ||
| Theorem | atssch 32279 | Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| ⊢ HAtoms ⊆ Cℋ | ||
| Theorem | atelch 32280 | An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) | ||
| Theorem | atne0 32281 | An atom is not the Hilbert lattice zero. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ HAtoms → 𝐴 ≠ 0ℋ) | ||
| Theorem | atss 32282 | A lattice element smaller than an atom is either the atom or zero. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) | ||
| Theorem | atsseq 32283 | Two atoms in a subset relationship are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) | ||
| Theorem | atcveq0 32284 | A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ 𝐵 ↔ 𝐴 = 0ℋ)) | ||
| Theorem | h1da 32285 | A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (⊥‘(⊥‘{𝐴})) ∈ HAtoms) | ||
| Theorem | spansna 32286 | The span of the singleton of a vector is an atom. (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (span‘{𝐴}) ∈ HAtoms) | ||
| Theorem | sh1dle 32287 | A 1-dimensional subspace is less than or equal to any subspace containing its generating vector. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴) → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴) | ||
| Theorem | ch1dle 32288 | A 1-dimensional subspace is less than or equal to any member of Cℋ containing its generating vector. (Contributed by NM, 30-May-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ 𝐴) → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴) | ||
| Theorem | atom1d 32289* | The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of [BeltramettiCassinelli] p. 107. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧ 𝐴 = (span‘{𝑥}))) | ||
| Theorem | superpos 32290* | Superposition Principle. If 𝐴 and 𝐵 are distinct atoms, there exists a third atom, distinct from 𝐴 and 𝐵, that is the superposition of 𝐴 and 𝐵. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴 ≠ 𝐵) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) | ||
| Theorem | chcv1 32291 | The Hilbert lattice has the covering property. Proposition 1(ii) of [Kalmbach] p. 140 (and its converse). (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
| Theorem | chcv2 32292 | The Hilbert lattice has the covering property. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
| Theorem | chjatom 32293 | The join of a closed subspace and an atom equals their subspace sum. Special case of remark in [Kalmbach] p. 65, stating that if 𝐴 or 𝐵 is finite-dimensional, then this equality holds. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | shatomici 32294* | The lattice of Hilbert subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 ≠ 0ℋ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) | ||
| Theorem | hatomici 32295* | The Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in [Kalmbach] p. 140. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ≠ 0ℋ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) | ||
| Theorem | hatomic 32296* | A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in [Kalmbach] p. 140. Also Definition 3.4-2 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 ≠ 0ℋ) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) | ||
| Theorem | shatomistici 32297* | The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ ⇒ ⊢ 𝐴 = (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | ||
| Theorem | hatomistici 32298* | Cℋ is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | ||
| Theorem | chpssati 32299* | Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴)) | ||
| Theorem | chrelati 32300* | The Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝐴 ⊊ (𝐴 ∨ℋ 𝑥) ∧ (𝐴 ∨ℋ 𝑥) ⊆ 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |