| Metamath
Proof Explorer Theorem List (p. 323 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | hstel2 32201 | Properties of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (((𝑆‘𝐴) ·ih (𝑆‘𝐵)) = 0 ∧ (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) +ℎ (𝑆‘𝐵)))) | ||
| Theorem | hstorth 32202 | Orthogonality property of a Hilbert-space-valued state. This is a key feature distinguishing it from a real-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → ((𝑆‘𝐴) ·ih (𝑆‘𝐵)) = 0) | ||
| Theorem | hstosum 32203 | Orthogonal sum property of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) +ℎ (𝑆‘𝐵))) | ||
| Theorem | hstoc 32204 | Sum of a Hilbert-space-valued state of a lattice element and its orthocomplement. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) | ||
| Theorem | hstnmoc 32205 | Sum of norms of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) | ||
| Theorem | stge0 32206 | The value of a state is nonnegative. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → 0 ≤ (𝑆‘𝐴))) | ||
| Theorem | stle1 32207 | The value of a state is less than or equal to one. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ≤ 1)) | ||
| Theorem | hstle1 32208 | The norm of the value of a Hilbert-space-valued state is less than or equal to one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘𝐴)) ≤ 1) | ||
| Theorem | hst1h 32209 | The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) | ||
| Theorem | hst0h 32210 | The norm of a Hilbert-space-valued state equals zero iff the state value equals zero. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 0 ↔ (𝑆‘𝐴) = 0ℎ)) | ||
| Theorem | hstpyth 32211 | Pythagorean property of a Hilbert-space-valued state for orthogonal vectors 𝐴 and 𝐵. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → ((normℎ‘(𝑆‘(𝐴 ∨ℋ 𝐵)))↑2) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘𝐵))↑2))) | ||
| Theorem | hstle 32212 | Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵)) → (normℎ‘(𝑆‘𝐴)) ≤ (normℎ‘(𝑆‘𝐵))) | ||
| Theorem | hstles 32213 | Ordering property of a Hilbert-space-valued state. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵)) → ((normℎ‘(𝑆‘𝐴)) = 1 → (normℎ‘(𝑆‘𝐵)) = 1)) | ||
| Theorem | hstoh 32214 | A Hilbert-space-valued state orthogonal to the state of the lattice one is zero. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ∧ ((𝑆‘𝐴) ·ih (𝑆‘ ℋ)) = 0) → (𝑆‘𝐴) = 0ℎ) | ||
| Theorem | hst0 32215 | A Hilbert-space-valued state is zero at the zero subspace. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ (𝑆 ∈ CHStates → (𝑆‘0ℋ) = 0ℎ) | ||
| Theorem | sthil 32216 | The value of a state at the full Hilbert space. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝑆 ∈ States → (𝑆‘ ℋ) = 1) | ||
| Theorem | stj 32217 | The value of a state on a join. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝑆 ∈ States → (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) + (𝑆‘𝐵)))) | ||
| Theorem | sto1i 32218 | The state of a subspace plus the state of its orthocomplement. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) + (𝑆‘(⊥‘𝐴))) = 1) | ||
| Theorem | sto2i 32219 | The state of the orthocomplement. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (𝑆‘(⊥‘𝐴)) = (1 − (𝑆‘𝐴))) | ||
| Theorem | stge1i 32220 | If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (1 ≤ (𝑆‘𝐴) ↔ (𝑆‘𝐴) = 1)) | ||
| Theorem | stle0i 32221 | If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) | ||
| Theorem | stlei 32222 | Ordering law for states. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (𝐴 ⊆ 𝐵 → (𝑆‘𝐴) ≤ (𝑆‘𝐵))) | ||
| Theorem | stlesi 32223 | Ordering law for states. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (𝐴 ⊆ 𝐵 → ((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1))) | ||
| Theorem | stji1i 32224 | Join of components of Sasaki arrow ->1. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (𝑆‘((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) = ((𝑆‘(⊥‘𝐴)) + (𝑆‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | stm1i 32225 | State of component of unit meet. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘(𝐴 ∩ 𝐵)) = 1 → (𝑆‘𝐴) = 1)) | ||
| Theorem | stm1ri 32226 | State of component of unit meet. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘(𝐴 ∩ 𝐵)) = 1 → (𝑆‘𝐵) = 1)) | ||
| Theorem | stm1addi 32227 | Sum of states whose meet is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘(𝐴 ∩ 𝐵)) = 1 → ((𝑆‘𝐴) + (𝑆‘𝐵)) = 2)) | ||
| Theorem | staddi 32228 | If the sum of 2 states is 2, then each state is 1. (Contributed by NM, 12-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → (((𝑆‘𝐴) + (𝑆‘𝐵)) = 2 → (𝑆‘𝐴) = 1)) | ||
| Theorem | stm1add3i 32229 | Sum of states whose meet is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((𝑆‘((𝐴 ∩ 𝐵) ∩ 𝐶)) = 1 → (((𝑆‘𝐴) + (𝑆‘𝐵)) + (𝑆‘𝐶)) = 3)) | ||
| Theorem | stadd3i 32230 | If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ (𝑆 ∈ States → ((((𝑆‘𝐴) + (𝑆‘𝐵)) + (𝑆‘𝐶)) = 3 → (𝑆‘𝐴) = 1)) | ||
| Theorem | st0 32231 | The state of the zero subspace. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝑆 ∈ States → (𝑆‘0ℋ) = 0) | ||
| Theorem | strlem1 32232* | Lemma for strong state theorem: if closed subspace 𝐴 is not contained in 𝐵, there is a unit vector 𝑢 in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (¬ 𝐴 ⊆ 𝐵 → ∃𝑢 ∈ (𝐴 ∖ 𝐵)(normℎ‘𝑢) = 1) | ||
| Theorem | strlem2 32233* | Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) ⇒ ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((normℎ‘((projℎ‘𝐶)‘𝑢))↑2)) | ||
| Theorem | strlem3a 32234* | Lemma for strong state theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → 𝑆 ∈ States) | ||
| Theorem | strlem3 32235* | Lemma for strong state theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → 𝑆 ∈ States) | ||
| Theorem | strlem4 32236* | Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (𝑆‘𝐴) = 1) | ||
| Theorem | strlem5 32237* | Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (𝑆‘𝐵) < 1) | ||
| Theorem | strlem6 32238* | Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → ¬ ((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1)) | ||
| Theorem | stri 32239* | Strong state theorem. The states on a Hilbert lattice define an ordering. Remark in [Mayet] p. 370. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ States ((𝑓‘𝐴) = 1 → (𝑓‘𝐵) = 1) → 𝐴 ⊆ 𝐵) | ||
| Theorem | strb 32240* | Strong state theorem (bidirectional version). (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ States ((𝑓‘𝐴) = 1 → (𝑓‘𝐵) = 1) ↔ 𝐴 ⊆ 𝐵) | ||
| Theorem | hstrlem2 32241* | Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) ⇒ ⊢ (𝐶 ∈ Cℋ → (𝑆‘𝐶) = ((projℎ‘𝐶)‘𝑢)) | ||
| Theorem | hstrlem3a 32242* | Lemma for strong set of CH states theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → 𝑆 ∈ CHStates) | ||
| Theorem | hstrlem3 32243* | Lemma for strong set of CH states theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → 𝑆 ∈ CHStates) | ||
| Theorem | hstrlem4 32244* | Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (normℎ‘(𝑆‘𝐴)) = 1) | ||
| Theorem | hstrlem5 32245* | Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (normℎ‘(𝑆‘𝐵)) < 1) | ||
| Theorem | hstrlem6 32246* | Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((projℎ‘𝑥)‘𝑢)) & ⊢ (𝜑 ↔ (𝑢 ∈ (𝐴 ∖ 𝐵) ∧ (normℎ‘𝑢) = 1)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → ¬ ((normℎ‘(𝑆‘𝐴)) = 1 → (normℎ‘(𝑆‘𝐵)) = 1)) | ||
| Theorem | hstri 32247* | Hilbert space admits a strong set of Hilbert-space-valued states (CH-states). Theorem in [Mayet3] p. 10. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ CHStates ((normℎ‘(𝑓‘𝐴)) = 1 → (normℎ‘(𝑓‘𝐵)) = 1) → 𝐴 ⊆ 𝐵) | ||
| Theorem | hstrbi 32248* | Strong CH-state theorem (bidirectional version). Theorem in [Mayet3] p. 10 and its converse. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑓 ∈ CHStates ((normℎ‘(𝑓‘𝐴)) = 1 → (normℎ‘(𝑓‘𝐵)) = 1) ↔ 𝐴 ⊆ 𝐵) | ||
| Theorem | largei 32249* | A Hilbert lattice admits a largei set of states. Remark in [Mayet] p. 370. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (¬ 𝐴 = 0ℋ ↔ ∃𝑓 ∈ States (𝑓‘𝐴) = 1) | ||
| Theorem | jplem1 32250 | Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (𝑢 ∈ 𝐴 ↔ ((normℎ‘((projℎ‘𝐴)‘𝑢))↑2) = 1)) | ||
| Theorem | jplem2 32251* | Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (𝑢 ∈ 𝐴 ↔ (𝑆‘𝐴) = 1)) | ||
| Theorem | jpi 32252* | The function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a Jauch-Piron state. Remark in [Mayet] p. 370. (See strlem3a 32234 for the proof that 𝑆 is a state.) (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
| ⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (((𝑆‘𝐴) = 1 ∧ (𝑆‘𝐵) = 1) ↔ (𝑆‘(𝐴 ∩ 𝐵)) = 1)) | ||
| Theorem | golem1 32253 | Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) & ⊢ 𝑅 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) & ⊢ 𝑆 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) ⇒ ⊢ (𝑓 ∈ States → (((𝑓‘𝐹) + (𝑓‘𝐺)) + (𝑓‘𝐻)) = (((𝑓‘𝐷) + (𝑓‘𝑅)) + (𝑓‘𝑆))) | ||
| Theorem | golem2 32254 | Lemma for Godowski's equation. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) & ⊢ 𝑅 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) & ⊢ 𝑆 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) ⇒ ⊢ (𝑓 ∈ States → ((𝑓‘((𝐹 ∩ 𝐺) ∩ 𝐻)) = 1 → (𝑓‘𝐷) = 1)) | ||
| Theorem | goeqi 32255 | Godowski's equation, shown here as a variant equivalent to Equation SF of [Godowski] p. 730. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) ⇒ ⊢ ((𝐹 ∩ 𝐺) ∩ 𝐻) ⊆ 𝐷 | ||
| Theorem | stcltr1i 32256* | Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) | ||
| Theorem | stcltr2i 32257* | Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) | ||
| Theorem | stcltrlem1 32258* | Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → ((𝑆‘𝐵) = 1 → (𝑆‘((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) = 1)) | ||
| Theorem | stcltrlem2 32259* | Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) | ||
| Theorem | stcltrthi 32260* | Theorem for classically strong set of states. If there exists a "classically strong set of states" on lattice Cℋ (or actually any ortholattice, which would have an identical proof), then any two elements of the lattice commute, i.e., the lattice is distributive. (Proof due to Mladen Pavicic.) Theorem 3.3 of [MegPav2000] p. 2344. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∃𝑠 ∈ States ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑠‘𝑥) = 1 → (𝑠‘𝑦) = 1) → 𝑥 ⊆ 𝑦) ⇒ ⊢ 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) | ||
| Definition | df-cv 32261* | Define the covers relation (on the Hilbert lattice). Definition 3.2.18 of [PtakPulmannova] p. 68, whose notation we use. Ptak/Pulmannova's notation 𝐴 ⋖ℋ 𝐵 is read "𝐵 covers 𝐴 " or "𝐴 is covered by 𝐵 " , and it means that 𝐵 is larger than 𝐴 and there is nothing in between. See cvbr 32264 and cvbr2 32265 for membership relations. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ ⋖ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈ Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)))} | ||
| Definition | df-md 32262* | Define the modular pair relation (on the Hilbert lattice). Definition 1.1 of [MaedaMaeda] p. 1, who use the notation (x,y)M for "the ordered pair <x,y> is a modular pair." See mdbr 32276 for membership relation. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝑀ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀𝑧 ∈ Cℋ (𝑧 ⊆ 𝑦 → ((𝑧 ∨ℋ 𝑥) ∩ 𝑦) = (𝑧 ∨ℋ (𝑥 ∩ 𝑦))))} | ||
| Definition | df-dmd 32263* | Define the dual modular pair relation (on the Hilbert lattice). Definition 1.1 of [MaedaMaeda] p. 1, who use the notation (x,y)M* for "the ordered pair <x,y> is a dual modular pair." See dmdbr 32281 for membership relation. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝑀ℋ* = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀𝑧 ∈ Cℋ (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))))} | ||
| Theorem | cvbr 32264* | Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | ||
| Theorem | cvbr2 32265* | Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)))) | ||
| Theorem | cvcon3 32266 | Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) | ||
| Theorem | cvpss 32267 | The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | ||
| Theorem | cvnbtwn 32268 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | ||
| Theorem | cvnbtwn2 32269 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) | ||
| Theorem | cvnbtwn3 32270 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) | ||
| Theorem | cvnbtwn4 32271 | The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) | ||
| Theorem | cvnsym 32272 | The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) | ||
| Theorem | cvnref 32273 | The covers relation is not reflexive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) | ||
| Theorem | cvntr 32274 | The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) | ||
| Theorem | spansncv2 32275 | Hilbert space has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (¬ (span‘{𝐵}) ⊆ 𝐴 → 𝐴 ⋖ℋ (𝐴 ∨ℋ (span‘{𝐵})))) | ||
| Theorem | mdbr 32276* | Binary relation expressing 〈𝐴, 𝐵〉 is a modular pair. Definition 1.1 of [MaedaMaeda] p. 1. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | ||
| Theorem | mdi 32277 | Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) | ||
| Theorem | mdbr2 32278* | Binary relation expressing the modular pair property. This version has a weaker constraint than mdbr 32276. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | ||
| Theorem | mdbr3 32279* | Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) | ||
| Theorem | mdbr4 32280* | Binary relation expressing the modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) | ||
| Theorem | dmdbr 32281* | Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) | ||
| Theorem | dmdmd 32282 | The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of [MaedaMaeda] p. 130. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ (⊥‘𝐵))) | ||
| Theorem | mddmd 32283 | The modular pair property expressed in terms of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵))) | ||
| Theorem | dmdi 32284 | Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) | ||
| Theorem | dmdbr2 32285* | Binary relation expressing the dual modular pair property. This version has a weaker constraint than dmdbr 32281. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵)))) | ||
| Theorem | dmdi2 32286 | Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) | ||
| Theorem | dmdbr3 32287* | Binary relation expressing the dual modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)))) | ||
| Theorem | dmdbr4 32288* | Binary relation expressing the dual modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
| Theorem | dmdi4 32289 | Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → ((𝐶 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝐶 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
| Theorem | dmdbr5 32290* | Binary relation expressing the dual modular pair property. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)))) | ||
| Theorem | mddmd2 32291* | Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ 𝐴 𝑀ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ 𝐴 𝑀ℋ* 𝑥)) | ||
| Theorem | mdsl0 32292 | A sublattice condition that transfers the modular pair property. Exercise 12 of [Kalmbach] p. 103. Also Lemma 1.5.3 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ (𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ )) → ((((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧ 𝐴 𝑀ℋ 𝐵) → 𝐶 𝑀ℋ 𝐷)) | ||
| Theorem | ssmd1 32293 | Ordering implies the modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | ssmd2 32294 | Ordering implies the modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐵 𝑀ℋ 𝐴) | ||
| Theorem | ssdmd1 32295 | Ordering implies the dual modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ* 𝐵) | ||
| Theorem | ssdmd2 32296 | Ordering implies the dual modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴)) | ||
| Theorem | dmdsl3 32297 | Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) | ||
| Theorem | mdsl3 32298 | Sublattice mapping for a modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = 𝐶) | ||
| Theorem | mdslle1i 32299 | Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐶 ⊆ 𝐷 ↔ (𝐶 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵))) | ||
| Theorem | mdslle2i 32300 | Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → (𝐶 ⊆ 𝐷 ↔ (𝐶 ∨ℋ 𝐴) ⊆ (𝐷 ∨ℋ 𝐴))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |