HomeHome Metamath Proof Explorer
Theorem List (p. 323 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30158)
  Hilbert Space Explorer  Hilbert Space Explorer
(30159-31681)
  Users' Mathboxes  Users' Mathboxes
(31682-47805)
 

Theorem List for Metamath Proof Explorer - 32201-32300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcntrcrng 32201 The center of a ring is a commutative ring. (Contributed by Thierry Arnoux, 21-Aug-2023.)
𝑍 = (𝑅 β†Ύs (Cntrβ€˜(mulGrpβ€˜π‘…)))    β‡’   (𝑅 ∈ Ring β†’ 𝑍 ∈ CRing)
 
21.3.9.4  Totally ordered monoids and groups
 
Syntaxcomnd 32202 Extend class notation with the class of all right ordered monoids.
class oMnd
 
Syntaxcogrp 32203 Extend class notation with the class of all right ordered groups.
class oGrp
 
Definitiondf-omnd 32204* Define class of all right ordered monoids. An ordered monoid is a monoid with a total ordering compatible with its operation. It is possible to use this definition also for left ordered monoids, by applying it to (oppgβ€˜π‘€). (Contributed by Thierry Arnoux, 13-Mar-2018.)
oMnd = {𝑔 ∈ Mnd ∣ [(Baseβ€˜π‘”) / 𝑣][(+gβ€˜π‘”) / 𝑝][(leβ€˜π‘”) / 𝑙](𝑔 ∈ Toset ∧ βˆ€π‘Ž ∈ 𝑣 βˆ€π‘ ∈ 𝑣 βˆ€π‘ ∈ 𝑣 (π‘Žπ‘™π‘ β†’ (π‘Žπ‘π‘)𝑙(𝑏𝑝𝑐)))}
 
Definitiondf-ogrp 32205 Define class of all ordered groups. An ordered group is a group with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 13-Mar-2018.)
oGrp = (Grp ∩ oMnd)
 
Theoremisomnd 32206* A (left) ordered monoid is a monoid with a total ordering compatible with its operation. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐡 = (Baseβ€˜π‘€)    &    + = (+gβ€˜π‘€)    &    ≀ = (leβ€˜π‘€)    β‡’   (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ βˆ€π‘Ž ∈ 𝐡 βˆ€π‘ ∈ 𝐡 βˆ€π‘ ∈ 𝐡 (π‘Ž ≀ 𝑏 β†’ (π‘Ž + 𝑐) ≀ (𝑏 + 𝑐))))
 
Theoremisogrp 32207 A (left-)ordered group is a group with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(𝐺 ∈ oGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd))
 
Theoremogrpgrp 32208 A left-ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.)
(𝐺 ∈ oGrp β†’ 𝐺 ∈ Grp)
 
Theoremomndmnd 32209 A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018.)
(𝑀 ∈ oMnd β†’ 𝑀 ∈ Mnd)
 
Theoremomndtos 32210 A left-ordered monoid is a totally ordered set. (Contributed by Thierry Arnoux, 13-Mar-2018.)
(𝑀 ∈ oMnd β†’ 𝑀 ∈ Toset)
 
Theoremomndadd 32211 In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐡 = (Baseβ€˜π‘€)    &    ≀ = (leβ€˜π‘€)    &    + = (+gβ€˜π‘€)    β‡’   ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ 𝑋 ≀ π‘Œ) β†’ (𝑋 + 𝑍) ≀ (π‘Œ + 𝑍))
 
Theoremomndaddr 32212 In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐡 = (Baseβ€˜π‘€)    &    ≀ = (leβ€˜π‘€)    &    + = (+gβ€˜π‘€)    β‡’   (((oppgβ€˜π‘€) ∈ oMnd ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ 𝑋 ≀ π‘Œ) β†’ (𝑍 + 𝑋) ≀ (𝑍 + π‘Œ))
 
Theoremomndadd2d 32213 In a commutative left ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐡 = (Baseβ€˜π‘€)    &    ≀ = (leβ€˜π‘€)    &    + = (+gβ€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ oMnd)    &   (πœ‘ β†’ π‘Š ∈ 𝐡)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ 𝑋 ≀ 𝑍)    &   (πœ‘ β†’ π‘Œ ≀ π‘Š)    &   (πœ‘ β†’ 𝑀 ∈ CMnd)    β‡’   (πœ‘ β†’ (𝑋 + π‘Œ) ≀ (𝑍 + π‘Š))
 
Theoremomndadd2rd 32214 In a left- and right- ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 2-May-2018.)
𝐡 = (Baseβ€˜π‘€)    &    ≀ = (leβ€˜π‘€)    &    + = (+gβ€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ oMnd)    &   (πœ‘ β†’ π‘Š ∈ 𝐡)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ 𝑋 ≀ 𝑍)    &   (πœ‘ β†’ π‘Œ ≀ π‘Š)    &   (πœ‘ β†’ (oppgβ€˜π‘€) ∈ oMnd)    β‡’   (πœ‘ β†’ (𝑋 + π‘Œ) ≀ (𝑍 + π‘Š))
 
Theoremsubmomnd 32215 A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018.)
((𝑀 ∈ oMnd ∧ (𝑀 β†Ύs 𝐴) ∈ Mnd) β†’ (𝑀 β†Ύs 𝐴) ∈ oMnd)
 
Theoremxrge0omnd 32216 The nonnegative extended real numbers form an ordered monoid. (Contributed by Thierry Arnoux, 22-Mar-2018.)
(ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ oMnd
 
Theoremomndmul2 32217 In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
𝐡 = (Baseβ€˜π‘€)    &    ≀ = (leβ€˜π‘€)    &    Β· = (.gβ€˜π‘€)    &    0 = (0gβ€˜π‘€)    β‡’   ((𝑀 ∈ oMnd ∧ (𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•0) ∧ 0 ≀ 𝑋) β†’ 0 ≀ (𝑁 Β· 𝑋))
 
Theoremomndmul3 32218 In an ordered monoid, the ordering is compatible with group power. This version does not require the monoid to be commutative. (Contributed by Thierry Arnoux, 23-Mar-2018.)
𝐡 = (Baseβ€˜π‘€)    &    ≀ = (leβ€˜π‘€)    &    Β· = (.gβ€˜π‘€)    &    0 = (0gβ€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ oMnd)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑃 ∈ β„•0)    &   (πœ‘ β†’ 𝑁 ≀ 𝑃)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ 0 ≀ 𝑋)    β‡’   (πœ‘ β†’ (𝑁 Β· 𝑋) ≀ (𝑃 Β· 𝑋))
 
Theoremomndmul 32219 In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐡 = (Baseβ€˜π‘€)    &    ≀ = (leβ€˜π‘€)    &    Β· = (.gβ€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ oMnd)    &   (πœ‘ β†’ 𝑀 ∈ CMnd)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ≀ π‘Œ)    β‡’   (πœ‘ β†’ (𝑁 Β· 𝑋) ≀ (𝑁 Β· π‘Œ))
 
Theoremogrpinv0le 32220 In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
𝐡 = (Baseβ€˜πΊ)    &    ≀ = (leβ€˜πΊ)    &   πΌ = (invgβ€˜πΊ)    &    0 = (0gβ€˜πΊ)    β‡’   ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐡) β†’ ( 0 ≀ 𝑋 ↔ (πΌβ€˜π‘‹) ≀ 0 ))
 
Theoremogrpsub 32221 In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐡 = (Baseβ€˜πΊ)    &    ≀ = (leβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ 𝑋 ≀ π‘Œ) β†’ (𝑋 βˆ’ 𝑍) ≀ (π‘Œ βˆ’ 𝑍))
 
Theoremogrpaddlt 32222 In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018.)
𝐡 = (Baseβ€˜πΊ)    &    < = (ltβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ (𝑋 + 𝑍) < (π‘Œ + 𝑍))
 
Theoremogrpaddltbi 32223 In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
𝐡 = (Baseβ€˜πΊ)    &    < = (ltβ€˜πΊ)    &    + = (+gβ€˜πΊ)    β‡’   ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 < π‘Œ ↔ (𝑋 + 𝑍) < (π‘Œ + 𝑍)))
 
Theoremogrpaddltrd 32224 In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
𝐡 = (Baseβ€˜πΊ)    &    < = (ltβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ 𝑉)    &   (πœ‘ β†’ (oppgβ€˜πΊ) ∈ oGrp)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ 𝑋 < π‘Œ)    β‡’   (πœ‘ β†’ (𝑍 + 𝑋) < (𝑍 + π‘Œ))
 
Theoremogrpaddltrbid 32225 In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018.)
𝐡 = (Baseβ€˜πΊ)    &    < = (ltβ€˜πΊ)    &    + = (+gβ€˜πΊ)    &   (πœ‘ β†’ 𝐺 ∈ 𝑉)    &   (πœ‘ β†’ (oppgβ€˜πΊ) ∈ oGrp)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 < π‘Œ ↔ (𝑍 + 𝑋) < (𝑍 + π‘Œ)))
 
Theoremogrpsublt 32226 In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
𝐡 = (Baseβ€˜πΊ)    &    < = (ltβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝐺 ∈ oGrp ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ 𝑋 < π‘Œ) β†’ (𝑋 βˆ’ 𝑍) < (π‘Œ βˆ’ 𝑍))
 
Theoremogrpinv0lt 32227 In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
𝐡 = (Baseβ€˜πΊ)    &    < = (ltβ€˜πΊ)    &   πΌ = (invgβ€˜πΊ)    &    0 = (0gβ€˜πΊ)    β‡’   ((𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐡) β†’ ( 0 < 𝑋 ↔ (πΌβ€˜π‘‹) < 0 ))
 
Theoremogrpinvlt 32228 In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018.)
𝐡 = (Baseβ€˜πΊ)    &    < = (ltβ€˜πΊ)    &   πΌ = (invgβ€˜πΊ)    β‡’   (((𝐺 ∈ oGrp ∧ (oppgβ€˜πΊ) ∈ oGrp) ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 < π‘Œ ↔ (πΌβ€˜π‘Œ) < (πΌβ€˜π‘‹)))
 
Theoremgsumle 32229 A finite sum in an ordered monoid is monotonic. This proof would be much easier in an ordered group, where an inverse element would be available. (Contributed by Thierry Arnoux, 13-Mar-2018.)
𝐡 = (Baseβ€˜π‘€)    &    ≀ = (leβ€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ oMnd)    &   (πœ‘ β†’ 𝑀 ∈ CMnd)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    &   (πœ‘ β†’ 𝐹:𝐴⟢𝐡)    &   (πœ‘ β†’ 𝐺:𝐴⟢𝐡)    &   (πœ‘ β†’ 𝐹 ∘r ≀ 𝐺)    β‡’   (πœ‘ β†’ (𝑀 Ξ£g 𝐹) ≀ (𝑀 Ξ£g 𝐺))
 
21.3.9.5  The symmetric group
 
Theoremsymgfcoeu 32230* Uniqueness property of permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝐺 = (Baseβ€˜(SymGrpβ€˜π·))    β‡’   ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝐺 ∧ 𝑄 ∈ 𝐺) β†’ βˆƒ!𝑝 ∈ 𝐺 𝑄 = (𝑃 ∘ 𝑝))
 
Theoremsymgcom 32231 Two permutations 𝑋 and π‘Œ commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 15-Oct-2023.)
𝐺 = (SymGrpβ€˜π΄)    &   π΅ = (Baseβ€˜πΊ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ (𝑋 β†Ύ 𝐸) = ( I β†Ύ 𝐸))    &   (πœ‘ β†’ (π‘Œ β†Ύ 𝐹) = ( I β†Ύ 𝐹))    &   (πœ‘ β†’ (𝐸 ∩ 𝐹) = βˆ…)    &   (πœ‘ β†’ (𝐸 βˆͺ 𝐹) = 𝐴)    β‡’   (πœ‘ β†’ (𝑋 ∘ π‘Œ) = (π‘Œ ∘ 𝑋))
 
Theoremsymgcom2 32232 Two permutations 𝑋 and π‘Œ commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 17-Nov-2023.)
𝐺 = (SymGrpβ€˜π΄)    &   π΅ = (Baseβ€˜πΊ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ (dom (𝑋 βˆ– I ) ∩ dom (π‘Œ βˆ– I )) = βˆ…)    β‡’   (πœ‘ β†’ (𝑋 ∘ π‘Œ) = (π‘Œ ∘ 𝑋))
 
Theoremsymgcntz 32233* All elements of a (finite) set of permutations commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 20-Nov-2023.)
𝑆 = (SymGrpβ€˜π·)    &   π΅ = (Baseβ€˜π‘†)    &   π‘ = (Cntzβ€˜π‘†)    &   (πœ‘ β†’ 𝐴 βŠ† 𝐡)    &   (πœ‘ β†’ Disj π‘₯ ∈ 𝐴 dom (π‘₯ βˆ– I ))    β‡’   (πœ‘ β†’ 𝐴 βŠ† (π‘β€˜π΄))
 
Theoremodpmco 32234 The composition of two odd permutations is even. (Contributed by Thierry Arnoux, 15-Oct-2023.)
𝑆 = (SymGrpβ€˜π·)    &   π΅ = (Baseβ€˜π‘†)    &   π΄ = (pmEvenβ€˜π·)    β‡’   ((𝐷 ∈ Fin ∧ 𝑋 ∈ (𝐡 βˆ– 𝐴) ∧ π‘Œ ∈ (𝐡 βˆ– 𝐴)) β†’ (𝑋 ∘ π‘Œ) ∈ 𝐴)
 
Theoremsymgsubg 32235 The value of the group subtraction operation of the symmetric group. (Contributed by Thierry Arnoux, 15-Oct-2023.)
𝐺 = (SymGrpβ€˜π΄)    &   π΅ = (Baseβ€˜πΊ)    &    βˆ’ = (-gβ€˜πΊ)    β‡’   ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 βˆ’ π‘Œ) = (𝑋 ∘ β—‘π‘Œ))
 
Theorempmtrprfv2 32236 In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝑇 = (pmTrspβ€˜π·)    β‡’   ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ π‘Œ ∈ 𝐷 ∧ 𝑋 β‰  π‘Œ)) β†’ ((π‘‡β€˜{𝑋, π‘Œ})β€˜π‘Œ) = 𝑋)
 
Theorempmtrcnel 32237 Composing a permutation 𝐹 with a transposition which results in moving at least one less point. Here the set of points moved by a permutation 𝐹 is expressed as dom (𝐹 βˆ– I ). (Contributed by Thierry Arnoux, 16-Nov-2023.)
𝑆 = (SymGrpβ€˜π·)    &   π‘‡ = (pmTrspβ€˜π·)    &   π΅ = (Baseβ€˜π‘†)    &   π½ = (πΉβ€˜πΌ)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    &   (πœ‘ β†’ 𝐼 ∈ dom (𝐹 βˆ– I ))    β‡’   (πœ‘ β†’ dom (((π‘‡β€˜{𝐼, 𝐽}) ∘ 𝐹) βˆ– I ) βŠ† (dom (𝐹 βˆ– I ) βˆ– {𝐼}))
 
Theorempmtrcnel2 32238 Variation on pmtrcnel 32237. (Contributed by Thierry Arnoux, 16-Nov-2023.)
𝑆 = (SymGrpβ€˜π·)    &   π‘‡ = (pmTrspβ€˜π·)    &   π΅ = (Baseβ€˜π‘†)    &   π½ = (πΉβ€˜πΌ)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    &   (πœ‘ β†’ 𝐼 ∈ dom (𝐹 βˆ– I ))    β‡’   (πœ‘ β†’ (dom (𝐹 βˆ– I ) βˆ– {𝐼, 𝐽}) βŠ† dom (((π‘‡β€˜{𝐼, 𝐽}) ∘ 𝐹) βˆ– I ))
 
Theorempmtrcnelor 32239 Composing a permutation 𝐹 with a transposition which results in moving one or two less points. (Contributed by Thierry Arnoux, 16-Nov-2023.)
𝑆 = (SymGrpβ€˜π·)    &   π‘‡ = (pmTrspβ€˜π·)    &   π΅ = (Baseβ€˜π‘†)    &   π½ = (πΉβ€˜πΌ)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐹 ∈ 𝐡)    &   (πœ‘ β†’ 𝐼 ∈ dom (𝐹 βˆ– I ))    &   πΈ = dom (𝐹 βˆ– I )    &   π΄ = dom (((π‘‡β€˜{𝐼, 𝐽}) ∘ 𝐹) βˆ– I )    β‡’   (πœ‘ β†’ (𝐴 = (𝐸 βˆ– {𝐼, 𝐽}) ∨ 𝐴 = (𝐸 βˆ– {𝐼})))
 
21.3.9.6  Transpositions
 
Theorempmtridf1o 32240 Transpositions of 𝑋 and π‘Œ (understood to be the identity when 𝑋 = π‘Œ), are bijections. (Contributed by Thierry Arnoux, 1-Jan-2022.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝑋 ∈ 𝐴)    &   (πœ‘ β†’ π‘Œ ∈ 𝐴)    &   π‘‡ = if(𝑋 = π‘Œ, ( I β†Ύ 𝐴), ((pmTrspβ€˜π΄)β€˜{𝑋, π‘Œ}))    β‡’   (πœ‘ β†’ 𝑇:𝐴–1-1-onto→𝐴)
 
Theorempmtridfv1 32241 Value at X of the transposition of 𝑋 and π‘Œ (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝑋 ∈ 𝐴)    &   (πœ‘ β†’ π‘Œ ∈ 𝐴)    &   π‘‡ = if(𝑋 = π‘Œ, ( I β†Ύ 𝐴), ((pmTrspβ€˜π΄)β€˜{𝑋, π‘Œ}))    β‡’   (πœ‘ β†’ (π‘‡β€˜π‘‹) = π‘Œ)
 
Theorempmtridfv2 32242 Value at Y of the transposition of 𝑋 and π‘Œ (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.)
(πœ‘ β†’ 𝐴 ∈ 𝑉)    &   (πœ‘ β†’ 𝑋 ∈ 𝐴)    &   (πœ‘ β†’ π‘Œ ∈ 𝐴)    &   π‘‡ = if(𝑋 = π‘Œ, ( I β†Ύ 𝐴), ((pmTrspβ€˜π΄)β€˜{𝑋, π‘Œ}))    β‡’   (πœ‘ β†’ (π‘‡β€˜π‘Œ) = 𝑋)
 
21.3.9.7  Permutation Signs
 
Theorempsgnid 32243 Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
𝑆 = (pmSgnβ€˜π·)    β‡’   (𝐷 ∈ Fin β†’ (π‘†β€˜( I β†Ύ 𝐷)) = 1)
 
Theorempsgndmfi 32244 For a finite base set, the permutation sign is defined for all permutations. (Contributed by Thierry Arnoux, 22-Aug-2020.)
𝑆 = (pmSgnβ€˜π·)    &   πΊ = (Baseβ€˜(SymGrpβ€˜π·))    β‡’   (𝐷 ∈ Fin β†’ 𝑆 Fn 𝐺)
 
Theorempmtrto1cl 32245 Useful lemma for the following theorems. (Contributed by Thierry Arnoux, 21-Aug-2020.)
𝐷 = (1...𝑁)    &   π‘‡ = (pmTrspβ€˜π·)    β‡’   ((𝐾 ∈ β„• ∧ (𝐾 + 1) ∈ 𝐷) β†’ (π‘‡β€˜{𝐾, (𝐾 + 1)}) ∈ ran 𝑇)
 
Theorempsgnfzto1stlem 32246* Lemma for psgnfzto1st 32251. Our permutation of rank (𝑛 + 1) can be written as a permutation of rank 𝑛 composed with a transposition. (Contributed by Thierry Arnoux, 21-Aug-2020.)
𝐷 = (1...𝑁)    β‡’   ((𝐾 ∈ β„• ∧ (𝐾 + 1) ∈ 𝐷) β†’ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, (𝐾 + 1), if(𝑖 ≀ (𝐾 + 1), (𝑖 βˆ’ 1), 𝑖))) = (((pmTrspβ€˜π·)β€˜{𝐾, (𝐾 + 1)}) ∘ (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐾, if(𝑖 ≀ 𝐾, (𝑖 βˆ’ 1), 𝑖)))))
 
Theoremfzto1stfv1 32247* Value of our permutation 𝑃 at 1. (Contributed by Thierry Arnoux, 23-Aug-2020.)
𝐷 = (1...𝑁)    &   π‘ƒ = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≀ 𝐼, (𝑖 βˆ’ 1), 𝑖)))    β‡’   (𝐼 ∈ 𝐷 β†’ (π‘ƒβ€˜1) = 𝐼)
 
Theoremfzto1st1 32248* Special case where the permutation defined in psgnfzto1st 32251 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
𝐷 = (1...𝑁)    &   π‘ƒ = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≀ 𝐼, (𝑖 βˆ’ 1), 𝑖)))    β‡’   (𝐼 = 1 β†’ 𝑃 = ( I β†Ύ 𝐷))
 
Theoremfzto1st 32249* The function moving one element to the first position (and shifting all elements before it) is a permutation. (Contributed by Thierry Arnoux, 21-Aug-2020.)
𝐷 = (1...𝑁)    &   π‘ƒ = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≀ 𝐼, (𝑖 βˆ’ 1), 𝑖)))    &   πΊ = (SymGrpβ€˜π·)    &   π΅ = (Baseβ€˜πΊ)    β‡’   (𝐼 ∈ 𝐷 β†’ 𝑃 ∈ 𝐡)
 
Theoremfzto1stinvn 32250* Value of the inverse of our permutation 𝑃 at 𝐼. (Contributed by Thierry Arnoux, 23-Aug-2020.)
𝐷 = (1...𝑁)    &   π‘ƒ = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≀ 𝐼, (𝑖 βˆ’ 1), 𝑖)))    &   πΊ = (SymGrpβ€˜π·)    &   π΅ = (Baseβ€˜πΊ)    β‡’   (𝐼 ∈ 𝐷 β†’ (β—‘π‘ƒβ€˜πΌ) = 1)
 
Theorempsgnfzto1st 32251* The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020.)
𝐷 = (1...𝑁)    &   π‘ƒ = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≀ 𝐼, (𝑖 βˆ’ 1), 𝑖)))    &   πΊ = (SymGrpβ€˜π·)    &   π΅ = (Baseβ€˜πΊ)    &   π‘† = (pmSgnβ€˜π·)    β‡’   (𝐼 ∈ 𝐷 β†’ (π‘†β€˜π‘ƒ) = (-1↑(𝐼 + 1)))
 
21.3.9.8  Permutation cycles
 
Syntaxctocyc 32252 Extend class notation with the permutation cycle builder.
class toCyc
 
Definitiondf-tocyc 32253* Define a convenience permutation cycle builder. Given a list of elements to be cycled, in the form of a word, this function produces the corresponding permutation cycle. See definition in [Lang] p. 30. (Contributed by Thierry Arnoux, 19-Sep-2023.)
toCyc = (𝑑 ∈ V ↦ (𝑀 ∈ {𝑒 ∈ Word 𝑑 ∣ 𝑒:dom 𝑒–1-1→𝑑} ↦ (( I β†Ύ (𝑑 βˆ– ran 𝑀)) βˆͺ ((𝑀 cyclShift 1) ∘ ◑𝑀))))
 
Theoremtocycval 32254* Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023.)
𝐢 = (toCycβ€˜π·)    β‡’   (𝐷 ∈ 𝑉 β†’ 𝐢 = (𝑀 ∈ {𝑒 ∈ Word 𝐷 ∣ 𝑒:dom 𝑒–1-1→𝐷} ↦ (( I β†Ύ (𝐷 βˆ– ran 𝑀)) βˆͺ ((𝑀 cyclShift 1) ∘ ◑𝑀))))
 
Theoremtocycfv 32255 Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    β‡’   (πœ‘ β†’ (πΆβ€˜π‘Š) = (( I β†Ύ (𝐷 βˆ– ran π‘Š)) βˆͺ ((π‘Š cyclShift 1) ∘ β—‘π‘Š)))
 
Theoremtocycfvres1 32256 A cyclic permutation is a cyclic shift on its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    β‡’   (πœ‘ β†’ ((πΆβ€˜π‘Š) β†Ύ ran π‘Š) = ((π‘Š cyclShift 1) ∘ β—‘π‘Š))
 
Theoremtocycfvres2 32257 A cyclic permutation is the identity outside of its orbit. (Contributed by Thierry Arnoux, 15-Oct-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    β‡’   (πœ‘ β†’ ((πΆβ€˜π‘Š) β†Ύ (𝐷 βˆ– ran π‘Š)) = ( I β†Ύ (𝐷 βˆ– ran π‘Š)))
 
Theoremcycpmfvlem 32258 Lemma for cycpmfv1 32259 and cycpmfv2 32260. (Contributed by Thierry Arnoux, 22-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    &   (πœ‘ β†’ 𝑁 ∈ (0..^(β™―β€˜π‘Š)))    β‡’   (πœ‘ β†’ ((πΆβ€˜π‘Š)β€˜(π‘Šβ€˜π‘)) = (((π‘Š cyclShift 1) ∘ β—‘π‘Š)β€˜(π‘Šβ€˜π‘)))
 
Theoremcycpmfv1 32259 Value of a cycle function for any element but the last. (Contributed by Thierry Arnoux, 22-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    &   (πœ‘ β†’ 𝑁 ∈ (0..^((β™―β€˜π‘Š) βˆ’ 1)))    β‡’   (πœ‘ β†’ ((πΆβ€˜π‘Š)β€˜(π‘Šβ€˜π‘)) = (π‘Šβ€˜(𝑁 + 1)))
 
Theoremcycpmfv2 32260 Value of a cycle function for the last element of the orbit. (Contributed by Thierry Arnoux, 22-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    &   (πœ‘ β†’ 0 < (β™―β€˜π‘Š))    &   (πœ‘ β†’ 𝑁 = ((β™―β€˜π‘Š) βˆ’ 1))    β‡’   (πœ‘ β†’ ((πΆβ€˜π‘Š)β€˜(π‘Šβ€˜π‘)) = (π‘Šβ€˜0))
 
Theoremcycpmfv3 32261 Values outside of the orbit are unchanged by a cycle. (Contributed by Thierry Arnoux, 22-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    &   (πœ‘ β†’ 𝑋 ∈ 𝐷)    &   (πœ‘ β†’ Β¬ 𝑋 ∈ ran π‘Š)    β‡’   (πœ‘ β†’ ((πΆβ€˜π‘Š)β€˜π‘‹) = 𝑋)
 
Theoremcycpmcl 32262 Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    &   π‘† = (SymGrpβ€˜π·)    β‡’   (πœ‘ β†’ (πΆβ€˜π‘Š) ∈ (Baseβ€˜π‘†))
 
Theoremtocycf 32263* The permutation cycle builder as a function. (Contributed by Thierry Arnoux, 25-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   π΅ = (Baseβ€˜π‘†)    β‡’   (𝐷 ∈ 𝑉 β†’ 𝐢:{𝑀 ∈ Word 𝐷 ∣ 𝑀:dom 𝑀–1-1→𝐷}⟢𝐡)
 
Theoremtocyc01 32264 Permutation cycles built from the empty set or a singleton are the identity. (Contributed by Thierry Arnoux, 21-Nov-2023.)
𝐢 = (toCycβ€˜π·)    β‡’   ((𝐷 ∈ 𝑉 ∧ π‘Š ∈ (dom 𝐢 ∩ (β—‘β™― β€œ {0, 1}))) β†’ (πΆβ€˜π‘Š) = ( I β†Ύ 𝐷))
 
Theoremcycpm2tr 32265 A cyclic permutation of 2 elements is a transposition. (Contributed by Thierry Arnoux, 24-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   π‘‡ = (pmTrspβ€˜π·)    β‡’   (πœ‘ β†’ (πΆβ€˜βŸ¨β€œπΌπ½β€βŸ©) = (π‘‡β€˜{𝐼, 𝐽}))
 
Theoremcycpm2cl 32266 Closure for the 2-cycles. (Contributed by Thierry Arnoux, 24-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   π‘† = (SymGrpβ€˜π·)    β‡’   (πœ‘ β†’ (πΆβ€˜βŸ¨β€œπΌπ½β€βŸ©) ∈ (Baseβ€˜π‘†))
 
Theoremcyc2fv1 32267 Function value of a 2-cycle at the first point. (Contributed by Thierry Arnoux, 24-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   π‘† = (SymGrpβ€˜π·)    β‡’   (πœ‘ β†’ ((πΆβ€˜βŸ¨β€œπΌπ½β€βŸ©)β€˜πΌ) = 𝐽)
 
Theoremcyc2fv2 32268 Function value of a 2-cycle at the second point. (Contributed by Thierry Arnoux, 24-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   π‘† = (SymGrpβ€˜π·)    β‡’   (πœ‘ β†’ ((πΆβ€˜βŸ¨β€œπΌπ½β€βŸ©)β€˜π½) = 𝐼)
 
Theoremtrsp2cyc 32269* Exhibit the word a transposition corresponds to, as a cycle. (Contributed by Thierry Arnoux, 25-Sep-2023.)
𝑇 = ran (pmTrspβ€˜π·)    &   πΆ = (toCycβ€˜π·)    β‡’   ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ 𝑇) β†’ βˆƒπ‘– ∈ 𝐷 βˆƒπ‘— ∈ 𝐷 (𝑖 β‰  𝑗 ∧ 𝑃 = (πΆβ€˜βŸ¨β€œπ‘–π‘—β€βŸ©)))
 
Theoremcycpmco2f1 32270 The word U used in cycpmco2 32279 is injective, so it can represent a cycle and form a cyclic permutation (π‘€β€˜π‘ˆ). (Contributed by Thierry Arnoux, 4-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    β‡’   (πœ‘ β†’ π‘ˆ:dom π‘ˆβ€“1-1→𝐷)
 
Theoremcycpmco2rn 32271 The orbit of the composition of a cyclic permutation and a well-chosen transposition is one element more than the orbit of the original permutation. (Contributed by Thierry Arnoux, 4-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    β‡’   (πœ‘ β†’ ran π‘ˆ = (ran π‘Š βˆͺ {𝐼}))
 
Theoremcycpmco2lem1 32272 Lemma for cycpmco2 32279. (Contributed by Thierry Arnoux, 4-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    β‡’   (πœ‘ β†’ ((π‘€β€˜π‘Š)β€˜((π‘€β€˜βŸ¨β€œπΌπ½β€βŸ©)β€˜πΌ)) = ((π‘€β€˜π‘Š)β€˜π½))
 
Theoremcycpmco2lem2 32273 Lemma for cycpmco2 32279. (Contributed by Thierry Arnoux, 4-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    β‡’   (πœ‘ β†’ (π‘ˆβ€˜πΈ) = 𝐼)
 
Theoremcycpmco2lem3 32274 Lemma for cycpmco2 32279. (Contributed by Thierry Arnoux, 4-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    β‡’   (πœ‘ β†’ ((β™―β€˜π‘ˆ) βˆ’ 1) = (β™―β€˜π‘Š))
 
Theoremcycpmco2lem4 32275 Lemma for cycpmco2 32279. (Contributed by Thierry Arnoux, 4-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    β‡’   (πœ‘ β†’ ((π‘€β€˜π‘Š)β€˜((π‘€β€˜βŸ¨β€œπΌπ½β€βŸ©)β€˜πΌ)) = ((π‘€β€˜π‘ˆ)β€˜πΌ))
 
Theoremcycpmco2lem5 32276 Lemma for cycpmco2 32279. (Contributed by Thierry Arnoux, 4-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    &   (πœ‘ β†’ 𝐾 ∈ ran π‘Š)    &   (πœ‘ β†’ (β—‘π‘ˆβ€˜πΎ) = ((β™―β€˜π‘ˆ) βˆ’ 1))    β‡’   (πœ‘ β†’ ((π‘€β€˜π‘ˆ)β€˜πΎ) = ((π‘€β€˜π‘Š)β€˜πΎ))
 
Theoremcycpmco2lem6 32277 Lemma for cycpmco2 32279. (Contributed by Thierry Arnoux, 4-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    &   (πœ‘ β†’ 𝐾 ∈ ran π‘Š)    &   (πœ‘ β†’ 𝐾 β‰  𝐼)    &   (πœ‘ β†’ (β—‘π‘ˆβ€˜πΎ) ∈ (𝐸..^((β™―β€˜π‘ˆ) βˆ’ 1)))    β‡’   (πœ‘ β†’ ((π‘€β€˜π‘ˆ)β€˜πΎ) = ((π‘€β€˜π‘Š)β€˜πΎ))
 
Theoremcycpmco2lem7 32278 Lemma for cycpmco2 32279. (Contributed by Thierry Arnoux, 4-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    &   (πœ‘ β†’ 𝐾 ∈ ran π‘Š)    &   (πœ‘ β†’ 𝐾 β‰  𝐽)    &   (πœ‘ β†’ (β—‘π‘ˆβ€˜πΎ) ∈ (0..^𝐸))    β‡’   (πœ‘ β†’ ((π‘€β€˜π‘ˆ)β€˜πΎ) = ((π‘€β€˜π‘Š)β€˜πΎ))
 
Theoremcycpmco2 32279 The composition of a cyclic permutation and a transposition of one element in the cycle and one outside the cycle results in a cyclic permutation with one more element in its orbit. (Contributed by Thierry Arnoux, 2-Jan-2024.)
𝑀 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ dom 𝑀)    &   (πœ‘ β†’ 𝐼 ∈ (𝐷 βˆ– ran π‘Š))    &   (πœ‘ β†’ 𝐽 ∈ ran π‘Š)    &   πΈ = ((β—‘π‘Šβ€˜π½) + 1)    &   π‘ˆ = (π‘Š splice ⟨𝐸, 𝐸, βŸ¨β€œπΌβ€βŸ©βŸ©)    β‡’   (πœ‘ β†’ ((π‘€β€˜π‘Š) ∘ (π‘€β€˜βŸ¨β€œπΌπ½β€βŸ©)) = (π‘€β€˜π‘ˆ))
 
Theoremcyc2fvx 32280 Function value of a 2-cycle outside of its orbit. (Contributed by Thierry Arnoux, 19-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   (πœ‘ β†’ 𝐽 β‰  𝐾)    &   (πœ‘ β†’ 𝐾 β‰  𝐼)    β‡’   (πœ‘ β†’ ((πΆβ€˜βŸ¨β€œπΌπ½β€βŸ©)β€˜πΎ) = 𝐾)
 
Theoremcycpm3cl 32281 Closure of the 3-cycles in the permutations. (Contributed by Thierry Arnoux, 19-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   (πœ‘ β†’ 𝐽 β‰  𝐾)    &   (πœ‘ β†’ 𝐾 β‰  𝐼)    β‡’   (πœ‘ β†’ (πΆβ€˜βŸ¨β€œπΌπ½πΎβ€βŸ©) ∈ (Baseβ€˜π‘†))
 
Theoremcycpm3cl2 32282 Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   (πœ‘ β†’ 𝐽 β‰  𝐾)    &   (πœ‘ β†’ 𝐾 β‰  𝐼)    β‡’   (πœ‘ β†’ (πΆβ€˜βŸ¨β€œπΌπ½πΎβ€βŸ©) ∈ (𝐢 β€œ (β—‘β™― β€œ {3})))
 
Theoremcyc3fv1 32283 Function value of a 3-cycle at the first point. (Contributed by Thierry Arnoux, 19-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   (πœ‘ β†’ 𝐽 β‰  𝐾)    &   (πœ‘ β†’ 𝐾 β‰  𝐼)    β‡’   (πœ‘ β†’ ((πΆβ€˜βŸ¨β€œπΌπ½πΎβ€βŸ©)β€˜πΌ) = 𝐽)
 
Theoremcyc3fv2 32284 Function value of a 3-cycle at the second point. (Contributed by Thierry Arnoux, 19-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   (πœ‘ β†’ 𝐽 β‰  𝐾)    &   (πœ‘ β†’ 𝐾 β‰  𝐼)    β‡’   (πœ‘ β†’ ((πΆβ€˜βŸ¨β€œπΌπ½πΎβ€βŸ©)β€˜π½) = 𝐾)
 
Theoremcyc3fv3 32285 Function value of a 3-cycle at the third point. (Contributed by Thierry Arnoux, 19-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   (πœ‘ β†’ 𝐽 β‰  𝐾)    &   (πœ‘ β†’ 𝐾 β‰  𝐼)    β‡’   (πœ‘ β†’ ((πΆβ€˜βŸ¨β€œπΌπ½πΎβ€βŸ©)β€˜πΎ) = 𝐼)
 
Theoremcyc3co2 32286 Represent a 3-cycle as a composition of two 2-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.)
𝐢 = (toCycβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   (πœ‘ β†’ 𝐽 β‰  𝐾)    &   (πœ‘ β†’ 𝐾 β‰  𝐼)    &    Β· = (+gβ€˜π‘†)    β‡’   (πœ‘ β†’ (πΆβ€˜βŸ¨β€œπΌπ½πΎβ€βŸ©) = ((πΆβ€˜βŸ¨β€œπΌπΎβ€βŸ©) Β· (πΆβ€˜βŸ¨β€œπΌπ½β€βŸ©)))
 
Theoremcycpmconjvlem 32287 Lemma for cycpmconjv 32288. (Contributed by Thierry Arnoux, 9-Oct-2023.)
(πœ‘ β†’ 𝐹:𝐷–1-1-onto→𝐷)    &   (πœ‘ β†’ 𝐡 βŠ† 𝐷)    β‡’   (πœ‘ β†’ ((𝐹 β†Ύ (𝐷 βˆ– 𝐡)) ∘ ◑𝐹) = ( I β†Ύ (𝐷 βˆ– ran (𝐹 β†Ύ 𝐡))))
 
Theoremcycpmconjv 32288 A formula for computing conjugacy classes of cyclic permutations. Formula in property (b) of [Lang] p. 32. (Contributed by Thierry Arnoux, 9-Oct-2023.)
𝑆 = (SymGrpβ€˜π·)    &   π‘€ = (toCycβ€˜π·)    &    + = (+gβ€˜π‘†)    &    βˆ’ = (-gβ€˜π‘†)    &   π΅ = (Baseβ€˜π‘†)    β‡’   ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐡 ∧ π‘Š ∈ dom 𝑀) β†’ ((𝐺 + (π‘€β€˜π‘Š)) βˆ’ 𝐺) = (π‘€β€˜(𝐺 ∘ π‘Š)))
 
Theoremcycpmrn 32289 The range of the word used to build a cycle is the cycle's orbit, i.e., the set of points it moves. (Contributed by Thierry Arnoux, 20-Nov-2023.)
𝑀 = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    &   (πœ‘ β†’ 1 < (β™―β€˜π‘Š))    β‡’   (πœ‘ β†’ ran π‘Š = dom ((π‘€β€˜π‘Š) βˆ– I ))
 
Theoremtocyccntz 32290* All elements of a (finite) set of cycles commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 27-Nov-2023.)
𝑆 = (SymGrpβ€˜π·)    &   π‘ = (Cntzβ€˜π‘†)    &   π‘€ = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ Disj π‘₯ ∈ 𝐴 ran π‘₯)    &   (πœ‘ β†’ 𝐴 βŠ† dom 𝑀)    β‡’   (πœ‘ β†’ (𝑀 β€œ 𝐴) βŠ† (π‘β€˜(𝑀 β€œ 𝐴)))
 
21.3.9.9  The Alternating Group
 
Theoremevpmval 32291 Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.)
𝐴 = (pmEvenβ€˜π·)    β‡’   (𝐷 ∈ 𝑉 β†’ 𝐴 = (β—‘(pmSgnβ€˜π·) β€œ {1}))
 
Theoremcnmsgn0g 32292 The neutral element of the sign subgroup of the complex numbers. (Contributed by Thierry Arnoux, 1-Nov-2023.)
π‘ˆ = ((mulGrpβ€˜β„‚fld) β†Ύs {1, -1})    β‡’   1 = (0gβ€˜π‘ˆ)
 
Theoremevpmsubg 32293 The alternating group is a subgroup of the symmetric group. (Contributed by Thierry Arnoux, 1-Nov-2023.)
𝑆 = (SymGrpβ€˜π·)    &   π΄ = (pmEvenβ€˜π·)    β‡’   (𝐷 ∈ Fin β†’ 𝐴 ∈ (SubGrpβ€˜π‘†))
 
Theoremevpmid 32294 The identity is an even permutation. (Contributed by Thierry Arnoux, 18-Sep-2023.)
𝑆 = (SymGrpβ€˜π·)    β‡’   (𝐷 ∈ Fin β†’ ( I β†Ύ 𝐷) ∈ (pmEvenβ€˜π·))
 
Theoremaltgnsg 32295 The alternating group (pmEvenβ€˜π·) is a normal subgroup of the symmetric group. (Contributed by Thierry Arnoux, 18-Sep-2023.)
𝑆 = (SymGrpβ€˜π·)    β‡’   (𝐷 ∈ Fin β†’ (pmEvenβ€˜π·) ∈ (NrmSGrpβ€˜π‘†))
 
Theoremcyc3evpm 32296 3-Cycles are even permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.)
𝐢 = ((toCycβ€˜π·) β€œ (β—‘β™― β€œ {3}))    &   π΄ = (pmEvenβ€˜π·)    β‡’   (𝐷 ∈ Fin β†’ 𝐢 βŠ† 𝐴)
 
Theoremcyc3genpmlem 32297* Lemma for cyc3genpm 32298. (Contributed by Thierry Arnoux, 24-Sep-2023.)
𝐢 = (𝑀 β€œ (β—‘β™― β€œ {3}))    &   π΄ = (pmEvenβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   π‘ = (β™―β€˜π·)    &   π‘€ = (toCycβ€˜π·)    &    Β· = (+gβ€˜π‘†)    &   (πœ‘ β†’ 𝐼 ∈ 𝐷)    &   (πœ‘ β†’ 𝐽 ∈ 𝐷)    &   (πœ‘ β†’ 𝐾 ∈ 𝐷)    &   (πœ‘ β†’ 𝐿 ∈ 𝐷)    &   (πœ‘ β†’ 𝐸 = (π‘€β€˜βŸ¨β€œπΌπ½β€βŸ©))    &   (πœ‘ β†’ 𝐹 = (π‘€β€˜βŸ¨β€œπΎπΏβ€βŸ©))    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ 𝐼 β‰  𝐽)    &   (πœ‘ β†’ 𝐾 β‰  𝐿)    β‡’   (πœ‘ β†’ βˆƒπ‘ ∈ Word 𝐢(𝐸 Β· 𝐹) = (𝑆 Ξ£g 𝑐))
 
Theoremcyc3genpm 32298* The alternating group 𝐴 is generated by 3-cycles. Property (a) of [Lang] p. 32 . (Contributed by Thierry Arnoux, 27-Sep-2023.)
𝐢 = (𝑀 β€œ (β—‘β™― β€œ {3}))    &   π΄ = (pmEvenβ€˜π·)    &   π‘† = (SymGrpβ€˜π·)    &   π‘ = (β™―β€˜π·)    &   π‘€ = (toCycβ€˜π·)    β‡’   (𝐷 ∈ Fin β†’ (𝑄 ∈ 𝐴 ↔ βˆƒπ‘€ ∈ Word 𝐢𝑄 = (𝑆 Ξ£g 𝑀)))
 
Theoremcycpmgcl 32299 Cyclic permutations are permutations, similar to cycpmcl 32262, but where the set of cyclic permutations of length 𝑃 is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023.)
𝐢 = (𝑀 β€œ (β—‘β™― β€œ {𝑃}))    &   π‘† = (SymGrpβ€˜π·)    &   π‘ = (β™―β€˜π·)    &   π‘€ = (toCycβ€˜π·)    &   π΅ = (Baseβ€˜π‘†)    β‡’   ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) β†’ 𝐢 βŠ† 𝐡)
 
Theoremcycpmconjslem1 32300 Lemma for cycpmconjs 32302. (Contributed by Thierry Arnoux, 14-Oct-2023.)
𝐢 = (𝑀 β€œ (β—‘β™― β€œ {𝑃}))    &   π‘† = (SymGrpβ€˜π·)    &   π‘ = (β™―β€˜π·)    &   π‘€ = (toCycβ€˜π·)    &   (πœ‘ β†’ 𝐷 ∈ 𝑉)    &   (πœ‘ β†’ π‘Š ∈ Word 𝐷)    &   (πœ‘ β†’ π‘Š:dom π‘Šβ€“1-1→𝐷)    &   (πœ‘ β†’ (β™―β€˜π‘Š) = 𝑃)    β‡’   (πœ‘ β†’ ((β—‘π‘Š ∘ (π‘€β€˜π‘Š)) ∘ π‘Š) = (( I β†Ύ (0..^𝑃)) cyclShift 1))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47805
  Copyright terms: Public domain < Previous  Next >