![]() |
Metamath
Proof Explorer Theorem List (p. 323 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28330) |
![]() (28331-29855) |
![]() (29856-43447) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | eqfunresadj 32201 | Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌}))) | ||
Theorem | eqfunressuc 32202 | Law for equality of restriction to successors. This is primarily useful when 𝑋 is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021.) |
⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋)) | ||
Theorem | funeldmb 32203 | If ∅ is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹‘𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.) |
⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) | ||
Theorem | elintfv 32204* | Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021.) |
⊢ 𝑋 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑋 ∈ ∩ (𝐹 “ 𝐵) ↔ ∀𝑦 ∈ 𝐵 𝑋 ∈ (𝐹‘𝑦))) | ||
Theorem | funpsstri 32205 | A condition for subset trichotomy for functions. (Contributed by Scott Fenton, 19-Apr-2011.) |
⊢ ((Fun 𝐻 ∧ (𝐹 ⊆ 𝐻 ∧ 𝐺 ⊆ 𝐻) ∧ (dom 𝐹 ⊆ dom 𝐺 ∨ dom 𝐺 ⊆ dom 𝐹)) → (𝐹 ⊊ 𝐺 ∨ 𝐹 = 𝐺 ∨ 𝐺 ⊊ 𝐹)) | ||
Theorem | fundmpss 32206 | If a class 𝐹 is a proper subset of a function 𝐺, then dom 𝐹 ⊊ dom 𝐺. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ (Fun 𝐺 → (𝐹 ⊊ 𝐺 → dom 𝐹 ⊊ dom 𝐺)) | ||
Theorem | fvresval 32207 | The value of a function at a restriction is either null or the same as the function itself. (Contributed by Scott Fenton, 4-Sep-2011.) |
⊢ (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | ||
Theorem | funsseq 32208 | Given two functions with equal domains, equality only requires one direction of the subset relationship. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ ((Fun 𝐹 ∧ Fun 𝐺 ∧ dom 𝐹 = dom 𝐺) → (𝐹 = 𝐺 ↔ 𝐹 ⊆ 𝐺)) | ||
Theorem | fununiq 32209 | The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) | ||
Theorem | funbreq 32210 | An equality condition for functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((Fun 𝐹 ∧ 𝐴𝐹𝐵) → (𝐴𝐹𝐶 ↔ 𝐵 = 𝐶)) | ||
Theorem | fprb 32211* | A condition for functionhood over a pair. (Contributed by Scott Fenton, 16-Sep-2013.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐵 → (𝐹:{𝐴, 𝐵}⟶𝑅 ↔ ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑅 𝐹 = {〈𝐴, 𝑥〉, 〈𝐵, 𝑦〉})) | ||
Theorem | br1steq 32212 | Uniqueness condition for the binary relation 1st. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉1st 𝐶 ↔ 𝐶 = 𝐴) | ||
Theorem | br2ndeq 32213 | Uniqueness condition for the binary relation 2nd. (Contributed by Scott Fenton, 11-Apr-2014.) (Proof shortened by Mario Carneiro, 3-May-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉2nd 𝐶 ↔ 𝐶 = 𝐵) | ||
Theorem | dfdm5 32214 | Definition of domain in terms of 1st and image. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ dom 𝐴 = ((1st ↾ (V × V)) “ 𝐴) | ||
Theorem | dfrn5 32215 | Definition of range in terms of 2nd and image. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
⊢ ran 𝐴 = ((2nd ↾ (V × V)) “ 𝐴) | ||
Theorem | opelco3 32216 | Alternate way of saying that an ordered pair is in a composition. (Contributed by Scott Fenton, 6-May-2018.) |
⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ 𝐵 ∈ (𝐶 “ (𝐷 “ {𝐴}))) | ||
Theorem | elima4 32217 | Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.) |
⊢ (𝐴 ∈ (𝑅 “ 𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅) | ||
Theorem | fv1stcnv 32218 | The value of the converse of 1st restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝑉) → (◡(1st ↾ (𝐴 × {𝑌}))‘𝑋) = 〈𝑋, 𝑌〉) | ||
Theorem | fv2ndcnv 32219 | The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝐴) → (◡(2nd ↾ ({𝑋} × 𝐴))‘𝑌) = 〈𝑋, 𝑌〉) | ||
Theorem | imaindm 32220 | The image is unaffected by intersection with the domain. (Contributed by Scott Fenton, 17-Dec-2021.) |
⊢ (𝑅 “ 𝐴) = (𝑅 “ (𝐴 ∩ dom 𝑅)) | ||
Theorem | setinds 32221* | Principle of E induction (set induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.) |
⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | setinds2f 32222* | E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | setinds2 32223* | E induction schema, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2011.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
Theorem | elpotr 32224* | A class of transitive sets is partially ordered by E. (Contributed by Scott Fenton, 15-Oct-2010.) |
⊢ (∀𝑧 ∈ 𝐴 Tr 𝑧 → E Po 𝐴) | ||
Theorem | dford5reg 32225 | Given ax-reg 8766, an ordinal is a transitive class totally ordered by epsilon. (Contributed by Scott Fenton, 28-Jan-2011.) |
⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E Or 𝐴)) | ||
Theorem | dfon2lem1 32226 | Lemma for dfon2 32235. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} | ||
Theorem | dfon2lem2 32227* | Lemma for dfon2 32235. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴 | ||
Theorem | dfon2lem3 32228* | Lemma for dfon2 32235. All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (Tr 𝐴 ∧ ∀𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑧))) | ||
Theorem | dfon2lem4 32229* | Lemma for dfon2 32235. If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | ||
Theorem | dfon2lem5 32230* | Lemma for dfon2 32235. Two sets satisfying the new definition also satisfy trichotomy with respect to ∈. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ∧ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵)) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | ||
Theorem | dfon2lem6 32231* | Lemma for dfon2 32235. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ ((Tr 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑧((𝑧 ⊊ 𝑥 ∧ Tr 𝑧) → 𝑧 ∈ 𝑥)) → ∀𝑦((𝑦 ⊊ 𝑆 ∧ Tr 𝑦) → 𝑦 ∈ 𝑆)) | ||
Theorem | dfon2lem7 32232* | Lemma for dfon2 32235. All elements of a new ordinal are new ordinals. (Contributed by Scott Fenton, 25-Feb-2011.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) | ||
Theorem | dfon2lem8 32233* | Lemma for dfon2 32235. The intersection of a nonempty class 𝐴 of new ordinals is itself a new ordinal and is contained within 𝐴 (Contributed by Scott Fenton, 26-Feb-2011.) |
⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)) → (∀𝑧((𝑧 ⊊ ∩ 𝐴 ∧ Tr 𝑧) → 𝑧 ∈ ∩ 𝐴) ∧ ∩ 𝐴 ∈ 𝐴)) | ||
Theorem | dfon2lem9 32234* | Lemma for dfon2 32235. A class of new ordinals is well-founded by E. (Contributed by Scott Fenton, 3-Mar-2011.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥) → E Fr 𝐴) | ||
Theorem | dfon2 32235* | On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers", American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.) |
⊢ On = {𝑥 ∣ ∀𝑦((𝑦 ⊊ 𝑥 ∧ Tr 𝑦) → 𝑦 ∈ 𝑥)} | ||
Theorem | domep 32236 | The domain of the epsilon relation is the universe. (Contributed by Scott Fenton, 27-Oct-2010.) |
⊢ dom E = V | ||
Theorem | rdgprc0 32237 | The value of the recursive definition generator at ∅ when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (¬ 𝐼 ∈ V → (rec(𝐹, 𝐼)‘∅) = ∅) | ||
Theorem | rdgprc 32238 | The value of the recursive definition generator when 𝐼 is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (¬ 𝐼 ∈ V → rec(𝐹, 𝐼) = rec(𝐹, ∅)) | ||
Theorem | dfrdg2 32239* | Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝐼 ∈ 𝑉 → rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))}) | ||
Theorem | dfrdg3 32240* | Generalization of dfrdg2 32239 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ rec(𝐹, 𝐼) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = if(𝑦 = ∅, if(𝐼 ∈ V, 𝐼, ∅), if(Lim 𝑦, ∪ (𝑓 “ 𝑦), (𝐹‘(𝑓‘∪ 𝑦)))))} | ||
Theorem | axextdfeq 32241 | A version of ax-ext 2803 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → ((𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥) → (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤))) | ||
Theorem | ax8dfeq 32242 | A version of ax-8 2168 for use with defined equality. (Contributed by Scott Fenton, 12-Dec-2010.) |
⊢ ∃𝑧((𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦) → (𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑦)) | ||
Theorem | axextdist 32243 | ax-ext 2803 with distinctors instead of distinct variable restrictions. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦)) | ||
Theorem | axext4dist 32244 | axext4 2807 with distinctors instead of distinct variable restrictions. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → (𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦))) | ||
Theorem | 19.12b 32245* | Version of 19.12vv 2373 with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) | ||
Theorem | exnel 32246 | There is always a set not in 𝑦. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ∃𝑥 ¬ 𝑥 ∈ 𝑦 | ||
Theorem | distel 32247 | Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5069 and elirrv 8770.) (Contributed by Scott Fenton, 15-Dec-2010.) |
⊢ (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) | ||
Theorem | axextndbi 32248 | axextnd 9728 as a biconditional. (Contributed by Scott Fenton, 14-Dec-2010.) |
⊢ ∃𝑧(𝑥 = 𝑦 ↔ (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | ||
Theorem | hbntg 32249 | A more general form of hbnt 2328. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | hbimtg 32250 | A more general and closed form of hbim 2333. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ ((∀𝑥(𝜑 → ∀𝑥𝜒) ∧ (𝜓 → ∀𝑥𝜃)) → ((𝜒 → 𝜓) → ∀𝑥(𝜑 → 𝜃))) | ||
Theorem | hbaltg 32251 | A more general and closed form of hbal 2219. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜓)) | ||
Theorem | hbng 32252 | A more general form of hbn 2329. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (𝜑 → ∀𝑥𝜓) ⇒ ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜑) | ||
Theorem | hbimg 32253 | A more general form of hbim 2333. (Contributed by Scott Fenton, 13-Dec-2010.) |
⊢ (𝜑 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜃) ⇒ ⊢ ((𝜓 → 𝜒) → ∀𝑥(𝜑 → 𝜃)) | ||
Theorem | tfisg 32254* | A closed form of tfis 7315. (Contributed by Scott Fenton, 8-Jun-2011.) |
⊢ (∀𝑥 ∈ On (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥 ∈ On 𝜑) | ||
Syntax | ctrpred 32255 | Define the transitive predecessor class as a class. |
class TrPred(𝑅, 𝐴, 𝑋) | ||
Definition | df-trpred 32256* | Define the transitive predecessors of a class 𝑋 under a relationship 𝑅 and a class 𝐴. This class can be thought of as the "smallest" class containing all elements of 𝐴 that are linked to 𝑋 by a chain of 𝑅 relationships (see trpredtr 32268 and trpredmintr 32269). Definition based off of Lemma 4.2 of Don Monk's notes for Advanced Set Theory, which can be found at http://euclid.colorado.edu/~monkd/settheory (check The Internet Archive for it now as Prof. Monk appears to have rewritten his website). (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ TrPred(𝑅, 𝐴, 𝑋) = ∪ ran (rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω) | ||
Theorem | dftrpred2 32257* | A definition of the transitive predecessors of a class in terms of indexed union. (Contributed by Scott Fenton, 28-Apr-2012.) |
⊢ TrPred(𝑅, 𝐴, 𝑋) = ∪ 𝑖 ∈ ω ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) | ||
Theorem | trpredeq1 32258 | Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝑅 = 𝑆 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋)) | ||
Theorem | trpredeq2 32259 | Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝐴 = 𝐵 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐵, 𝑋)) | ||
Theorem | trpredeq3 32260 | Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝑋 = 𝑌 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌)) | ||
Theorem | trpredeq1d 32261 | Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝜑 → 𝑅 = 𝑆) ⇒ ⊢ (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑆, 𝐴, 𝑋)) | ||
Theorem | trpredeq2d 32262 | Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐵, 𝑋)) | ||
Theorem | trpredeq3d 32263 | Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.) |
⊢ (𝜑 → 𝑋 = 𝑌) ⇒ ⊢ (𝜑 → TrPred(𝑅, 𝐴, 𝑋) = TrPred(𝑅, 𝐴, 𝑌)) | ||
Theorem | eltrpred 32264* | A class is a transitive predecessor iff it is in some value of the underlying function. This theorem is not really meant to be used directly: instead refer to trpredpred 32266 and trpredmintr 32269. (Contributed by Scott Fenton, 28-Apr-2012.) |
⊢ (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) ↔ ∃𝑖 ∈ ω 𝑌 ∈ ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖)) | ||
Theorem | trpredlem1 32265* | Technical lemma for transitive predecessors properties. All values of the transitive predecessors' underlying function are subsets of the base set. (Contributed by Scott Fenton, 28-Apr-2012.) |
⊢ (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → ((rec((𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred(𝑅, 𝐴, 𝑦)), Pred(𝑅, 𝐴, 𝑋)) ↾ ω)‘𝑖) ⊆ 𝐴) | ||
Theorem | trpredpred 32266 | Assuming it exists, the predecessor class is a subset of the transitive predecessors. (Contributed by Scott Fenton, 18-Feb-2011.) |
⊢ (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → Pred(𝑅, 𝐴, 𝑋) ⊆ TrPred(𝑅, 𝐴, 𝑋)) | ||
Theorem | trpredss 32267 | The transitive predecessors form a subset of the base class. (Contributed by Scott Fenton, 20-Feb-2011.) |
⊢ (Pred(𝑅, 𝐴, 𝑋) ∈ 𝐵 → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐴) | ||
Theorem | trpredtr 32268 | The transitive predecessors are transitive in 𝑅 and 𝐴 (Contributed by Scott Fenton, 20-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) | ||
Theorem | trpredmintr 32269* | The transitive predecessors form the smallest class transitive in 𝑅 and 𝐴. That is, if 𝐵 is another 𝑅, 𝐴 transitive class containing Pred(𝑅, 𝐴, 𝑋), then TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵 (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) ∧ (∀𝑦 ∈ 𝐵 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝐵)) → TrPred(𝑅, 𝐴, 𝑋) ⊆ 𝐵) | ||
Theorem | trpredelss 32270 | Given a transitive predecessor 𝑌 of 𝑋, the transitive predecessors of 𝑌 are a subset of the transitive predecessors of 𝑋. (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → TrPred(𝑅, 𝐴, 𝑌) ⊆ TrPred(𝑅, 𝐴, 𝑋))) | ||
Theorem | dftrpred3g 32271* | The transitive predecessors of 𝑋 are equal to the predecessors of 𝑋 together with their transitive predecessors. (Contributed by Scott Fenton, 26-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))) | ||
Theorem | dftrpred4g 32272* | Another recursive expression for the transitive predecessors. (Contributed by Scott Fenton, 27-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)({𝑦} ∪ TrPred(𝑅, 𝐴, 𝑦))) | ||
Theorem | trpredpo 32273 | If 𝑅 partially orders 𝐴, then the transitive predecessors are the same as the immediate predecessors . (Contributed by Scott Fenton, 28-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ ((𝑅 Po 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐴, 𝑋)) | ||
Theorem | trpred0 32274 | The class of transitive predecessors is empty when 𝐴 is empty. (Contributed by Scott Fenton, 30-Apr-2012.) |
⊢ TrPred(𝑅, ∅, 𝑋) = ∅ | ||
Theorem | trpredex 32275 | The transitive predecessors of a relation form a set (NOTE: this is the first theorem in the transitive predecessor series that requires infinity). (Contributed by Scott Fenton, 18-Feb-2011.) |
⊢ TrPred(𝑅, 𝐴, 𝑋) ∈ V | ||
Theorem | trpredrec 32276* | If 𝑌 is an 𝑅, 𝐴 transitive predecessor, then it is either an immediate predecessor or there is a transitive predecessor between 𝑌 and 𝑋. (Contributed by Scott Fenton, 9-May-2012.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴) → (𝑌 ∈ TrPred(𝑅, 𝐴, 𝑋) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∨ ∃𝑧 ∈ TrPred (𝑅, 𝐴, 𝑋)𝑌𝑅𝑧))) | ||
Theorem | frpomin 32277* | Every (possibly proper) subclass of a class 𝐴 with a founded, partial-ordering, set-like relation 𝑅 has a minimal element. The additional condition of partial ordering over frmin 32281 enables avoiding infinity. (Contributed by Scott Fenton, 11-Feb-2022.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
Theorem | frpomin2 32278* | Every (possibly proper) subclass of a class 𝐴 with a founded, partial-ordering, set-like relation 𝑅 has a minimal element. The additional condition of partial ordering over frmin 32281 enables avoiding infinity. (Contributed by Scott Fenton, 11-Feb-2022.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑥) = ∅) | ||
Theorem | frpoind 32279* | The principle of founded induction over a partial ordering. This theorem is a version of frind 32282 that does not require infinity, and can be used to prove wfi 5953 and tfi 7314. (Contributed by Scott Fenton, 11-Feb-2022.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 = 𝐵) | ||
Theorem | frpoinsg 32280* | Founded, Partial-Ordering Induction Schema. If a property passes from all elements less than 𝑦 of a founded, partially-ordered class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 11-Feb-2022.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
Theorem | frmin 32281* | Every (possibly proper) subclass of a class 𝐴 with a founded, set-like relation 𝑅 has a minimal element. Lemma 4.3 of Don Monk's notes for Advanced Set Theory, which can be found at http://euclid.colorado.edu/~monkd/settheory. This is a very strong generalization of tz6.26 5951 and tz7.5 5984. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) | ||
Theorem | frind 32282* | The principle of founded induction. Theorem 4.4 of Don Monk's notes (see frmin 32281). This principle states that if 𝐵 is a subclass of a founded class 𝐴 with the property that every element of 𝐵 whose initial segment is included in 𝐴 is itself equal to 𝐴. Compare wfi 5953 and tfi 7314, which are special cases of this theorem that do not require the axiom of infinity to prove. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵))) → 𝐴 = 𝐵) | ||
Theorem | frindi 32283* | The principle of founded induction. Theorem 4.4 of Don Monk's notes (see frmin 32281). This principle states that if 𝐵 is a subclass of a founded class 𝐴 with the property that every element of 𝐵 whose initial segment is included in 𝐴 is itself equal to 𝐴. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Se 𝐴 ⇒ ⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵 → 𝑦 ∈ 𝐵)) → 𝐴 = 𝐵) | ||
Theorem | frinsg 32284* | Founded Induction Schema. If a property passes from all elements less than 𝑦 of a founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
Theorem | frins 32285* | Founded Induction Schema. If a property passes from all elements less than 𝑦 of a founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
Theorem | frins2fg 32286* | Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
Theorem | frins2f 32287* | Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
Theorem | frins2g 32288* | Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 8-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) | ||
Theorem | frins2 32289* | Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (𝑦 ∈ 𝐴 → 𝜑) | ||
Theorem | frins3 32290* | Founded Induction schema, using implicit substitution. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝑅 Fr 𝐴 & ⊢ 𝑅 Se 𝐴 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) ⇒ ⊢ (𝐵 ∈ 𝐴 → 𝜒) | ||
Theorem | orderseqlem 32291* | Lemma for poseq 32292 and soseq 32293. The function value of a sequene is either in 𝐴 or null. (Contributed by Scott Fenton, 8-Jun-2011.) |
⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} ⇒ ⊢ (𝐺 ∈ 𝐹 → (𝐺‘𝑋) ∈ (𝐴 ∪ {∅})) | ||
Theorem | poseq 32292* | A partial ordering of sequences of ordinals. (Contributed by Scott Fenton, 8-Jun-2011.) |
⊢ 𝑅 Po (𝐴 ∪ {∅}) & ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} & ⊢ 𝑆 = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)))} ⇒ ⊢ 𝑆 Po 𝐹 | ||
Theorem | soseq 32293* | A linear ordering of sequences of ordinals. (Contributed by Scott Fenton, 8-Jun-2011.) |
⊢ 𝑅 Or (𝐴 ∪ {∅}) & ⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} & ⊢ 𝑆 = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)))} & ⊢ ¬ ∅ ∈ 𝐴 ⇒ ⊢ 𝑆 Or 𝐹 | ||
Syntax | cwsuc 32294 | Declare the syntax for well-founded successor. |
class wsuc(𝑅, 𝐴, 𝑋) | ||
Syntax | cwlim 32295 | Declare the syntax for well-founded limit class. |
class WLim(𝑅, 𝐴) | ||
Definition | df-wsuc 32296 | Define the concept of a successor in a well-founded set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) | ||
Definition | df-wlim 32297* | Define the class of limit points of a well-founded set. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} | ||
Theorem | wsuceq123 32298 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) (Proof shortened by AV, 10-Oct-2021.) |
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐵, 𝑌)) | ||
Theorem | wsuceq1 32299 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝑅 = 𝑆 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑆, 𝐴, 𝑋)) | ||
Theorem | wsuceq2 32300 | Equality theorem for well-founded successor. (Contributed by Scott Fenton, 13-Jun-2018.) |
⊢ (𝐴 = 𝐵 → wsuc(𝑅, 𝐴, 𝑋) = wsuc(𝑅, 𝐵, 𝑋)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |