| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fvexd 6921 | . . . . 5
⊢ (𝑚 = 𝑀 → (Base‘𝑚) ∈ V) | 
| 2 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → 𝑣 = (Base‘𝑚)) | 
| 3 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | 
| 4 | 3 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → (Base‘𝑚) = (Base‘𝑀)) | 
| 5 | 2, 4 | eqtrd 2777 | . . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → 𝑣 = (Base‘𝑀)) | 
| 6 |  | isomnd.0 | . . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) | 
| 7 | 5, 6 | eqtr4di 2795 | . . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → 𝑣 = 𝐵) | 
| 8 |  | raleq 3323 | . . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → (∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) | 
| 9 | 8 | raleqbi1dv 3338 | . . . . . . . . . 10
⊢ (𝑣 = 𝐵 → (∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) | 
| 10 | 9 | raleqbi1dv 3338 | . . . . . . . . 9
⊢ (𝑣 = 𝐵 → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) | 
| 11 | 7, 10 | syl 17 | . . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) | 
| 12 | 11 | anbi2d 630 | . . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) | 
| 13 | 12 | sbcbidv 3845 | . . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) | 
| 14 | 13 | sbcbidv 3845 | . . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → ([(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) | 
| 15 | 1, 14 | sbcied 3832 | . . . 4
⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑣][(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) | 
| 16 |  | fvexd 6921 | . . . . 5
⊢ (𝑚 = 𝑀 → (+g‘𝑚) ∈ V) | 
| 17 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → 𝑝 = (+g‘𝑚)) | 
| 18 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | 
| 19 | 18 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (+g‘𝑚) = (+g‘𝑀)) | 
| 20 | 17, 19 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → 𝑝 = (+g‘𝑀)) | 
| 21 |  | isomnd.1 | . . . . . . . . . . . . 13
⊢  + =
(+g‘𝑀) | 
| 22 | 20, 21 | eqtr4di 2795 | . . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → 𝑝 = + ) | 
| 23 | 22 | oveqd 7448 | . . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (𝑎𝑝𝑐) = (𝑎 + 𝑐)) | 
| 24 | 22 | oveqd 7448 | . . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (𝑏𝑝𝑐) = (𝑏 + 𝑐)) | 
| 25 | 23, 24 | breq12d 5156 | . . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ((𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐) ↔ (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) | 
| 26 | 25 | imbi2d 340 | . . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ((𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)))) | 
| 27 | 26 | ralbidv 3178 | . . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)))) | 
| 28 | 27 | 2ralbidv 3221 | . . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)))) | 
| 29 | 28 | anbi2d 630 | . . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))))) | 
| 30 | 29 | sbcbidv 3845 | . . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))))) | 
| 31 | 16, 30 | sbcied 3832 | . . . 4
⊢ (𝑚 = 𝑀 → ([(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))))) | 
| 32 |  | fvexd 6921 | . . . . . 6
⊢ (𝑚 = 𝑀 → (le‘𝑚) ∈ V) | 
| 33 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑙 = (le‘𝑚)) | 
| 34 |  | simpl 482 | . . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑚 = 𝑀) | 
| 35 | 34 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (le‘𝑚) = (le‘𝑀)) | 
| 36 | 33, 35 | eqtrd 2777 | . . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑙 = (le‘𝑀)) | 
| 37 |  | isomnd.2 | . . . . . . . . . . . 12
⊢  ≤ =
(le‘𝑀) | 
| 38 | 36, 37 | eqtr4di 2795 | . . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑙 = ≤ ) | 
| 39 | 38 | breqd 5154 | . . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (𝑎𝑙𝑏 ↔ 𝑎 ≤ 𝑏)) | 
| 40 | 38 | breqd 5154 | . . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → ((𝑎 + 𝑐)𝑙(𝑏 + 𝑐) ↔ (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) | 
| 41 | 39, 40 | imbi12d 344 | . . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → ((𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)) ↔ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) | 
| 42 | 41 | ralbidv 3178 | . . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)) ↔ ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) | 
| 43 | 42 | 2ralbidv 3221 | . . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) | 
| 44 | 43 | anbi2d 630 | . . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) | 
| 45 | 32, 44 | sbcied 3832 | . . . . 5
⊢ (𝑚 = 𝑀 → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) | 
| 46 |  | eleq1 2829 | . . . . . 6
⊢ (𝑚 = 𝑀 → (𝑚 ∈ Toset ↔ 𝑀 ∈ Toset)) | 
| 47 | 46 | anbi1d 631 | . . . . 5
⊢ (𝑚 = 𝑀 → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) ↔ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) | 
| 48 | 45, 47 | bitrd 279 | . . . 4
⊢ (𝑚 = 𝑀 → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) ↔ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) | 
| 49 | 15, 31, 48 | 3bitrd 305 | . . 3
⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑣][(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) | 
| 50 |  | df-omnd 33076 | . . 3
⊢ oMnd =
{𝑚 ∈ Mnd ∣
[(Base‘𝑚) /
𝑣][(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))} | 
| 51 | 49, 50 | elrab2 3695 | . 2
⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ (𝑀 ∈ Toset ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) | 
| 52 |  | 3anass 1095 | . 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) ↔ (𝑀 ∈ Mnd ∧ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) | 
| 53 | 51, 52 | bitr4i 278 | 1
⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |