| Step | Hyp | Ref
| Expression |
| 1 | | fvexd 6891 |
. . . . 5
⊢ (𝑚 = 𝑀 → (Base‘𝑚) ∈ V) |
| 2 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → 𝑣 = (Base‘𝑚)) |
| 3 | | fveq2 6876 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) |
| 4 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → (Base‘𝑚) = (Base‘𝑀)) |
| 5 | 2, 4 | eqtrd 2770 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → 𝑣 = (Base‘𝑀)) |
| 6 | | isomnd.0 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) |
| 7 | 5, 6 | eqtr4di 2788 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → 𝑣 = 𝐵) |
| 8 | | raleq 3302 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → (∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) |
| 9 | 8 | raleqbi1dv 3317 |
. . . . . . . . . 10
⊢ (𝑣 = 𝐵 → (∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) |
| 10 | 9 | raleqbi1dv 3317 |
. . . . . . . . 9
⊢ (𝑣 = 𝐵 → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) |
| 11 | 7, 10 | syl 17 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) |
| 12 | 11 | anbi2d 630 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) |
| 13 | 12 | sbcbidv 3821 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) |
| 14 | 13 | sbcbidv 3821 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → ([(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) |
| 15 | 1, 14 | sbcied 3809 |
. . . 4
⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑣][(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) |
| 16 | | fvexd 6891 |
. . . . 5
⊢ (𝑚 = 𝑀 → (+g‘𝑚) ∈ V) |
| 17 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → 𝑝 = (+g‘𝑚)) |
| 18 | | fveq2 6876 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (+g‘𝑚) = (+g‘𝑀)) |
| 20 | 17, 19 | eqtrd 2770 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → 𝑝 = (+g‘𝑀)) |
| 21 | | isomnd.1 |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝑀) |
| 22 | 20, 21 | eqtr4di 2788 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → 𝑝 = + ) |
| 23 | 22 | oveqd 7422 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (𝑎𝑝𝑐) = (𝑎 + 𝑐)) |
| 24 | 22 | oveqd 7422 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (𝑏𝑝𝑐) = (𝑏 + 𝑐)) |
| 25 | 23, 24 | breq12d 5132 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ((𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐) ↔ (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) |
| 26 | 25 | imbi2d 340 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ((𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)))) |
| 27 | 26 | ralbidv 3163 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)))) |
| 28 | 27 | 2ralbidv 3205 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)))) |
| 29 | 28 | anbi2d 630 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))))) |
| 30 | 29 | sbcbidv 3821 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))))) |
| 31 | 16, 30 | sbcied 3809 |
. . . 4
⊢ (𝑚 = 𝑀 → ([(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))))) |
| 32 | | fvexd 6891 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (le‘𝑚) ∈ V) |
| 33 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑙 = (le‘𝑚)) |
| 34 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑚 = 𝑀) |
| 35 | 34 | fveq2d 6880 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (le‘𝑚) = (le‘𝑀)) |
| 36 | 33, 35 | eqtrd 2770 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑙 = (le‘𝑀)) |
| 37 | | isomnd.2 |
. . . . . . . . . . . 12
⊢ ≤ =
(le‘𝑀) |
| 38 | 36, 37 | eqtr4di 2788 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑙 = ≤ ) |
| 39 | 38 | breqd 5130 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (𝑎𝑙𝑏 ↔ 𝑎 ≤ 𝑏)) |
| 40 | 38 | breqd 5130 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → ((𝑎 + 𝑐)𝑙(𝑏 + 𝑐) ↔ (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
| 41 | 39, 40 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → ((𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)) ↔ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
| 42 | 41 | ralbidv 3163 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)) ↔ ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
| 43 | 42 | 2ralbidv 3205 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
| 44 | 43 | anbi2d 630 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
| 45 | 32, 44 | sbcied 3809 |
. . . . 5
⊢ (𝑚 = 𝑀 → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
| 46 | | eleq1 2822 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (𝑚 ∈ Toset ↔ 𝑀 ∈ Toset)) |
| 47 | 46 | anbi1d 631 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) ↔ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
| 48 | 45, 47 | bitrd 279 |
. . . 4
⊢ (𝑚 = 𝑀 → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) ↔ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
| 49 | 15, 31, 48 | 3bitrd 305 |
. . 3
⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑣][(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
| 50 | | df-omnd 33067 |
. . 3
⊢ oMnd =
{𝑚 ∈ Mnd ∣
[(Base‘𝑚) /
𝑣][(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))} |
| 51 | 49, 50 | elrab2 3674 |
. 2
⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ (𝑀 ∈ Toset ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
| 52 | | 3anass 1094 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) ↔ (𝑀 ∈ Mnd ∧ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
| 53 | 51, 52 | bitr4i 278 |
1
⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |