Step | Hyp | Ref
| Expression |
1 | | fvexd 6771 |
. . . . 5
⊢ (𝑚 = 𝑀 → (Base‘𝑚) ∈ V) |
2 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → 𝑣 = (Base‘𝑚)) |
3 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) |
4 | 3 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → (Base‘𝑚) = (Base‘𝑀)) |
5 | 2, 4 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → 𝑣 = (Base‘𝑀)) |
6 | | isomnd.0 |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑀) |
7 | 5, 6 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → 𝑣 = 𝐵) |
8 | | raleq 3333 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝐵 → (∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) |
9 | 8 | raleqbi1dv 3331 |
. . . . . . . . . 10
⊢ (𝑣 = 𝐵 → (∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) |
10 | 9 | raleqbi1dv 3331 |
. . . . . . . . 9
⊢ (𝑣 = 𝐵 → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) |
11 | 7, 10 | syl 17 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → (∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))) |
12 | 11 | anbi2d 628 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) |
13 | 12 | sbcbidv 3770 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) |
14 | 13 | sbcbidv 3770 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑣 = (Base‘𝑚)) → ([(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) |
15 | 1, 14 | sbcied 3756 |
. . . 4
⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑣][(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))))) |
16 | | fvexd 6771 |
. . . . 5
⊢ (𝑚 = 𝑀 → (+g‘𝑚) ∈ V) |
17 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → 𝑝 = (+g‘𝑚)) |
18 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) |
19 | 18 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (+g‘𝑚) = (+g‘𝑀)) |
20 | 17, 19 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → 𝑝 = (+g‘𝑀)) |
21 | | isomnd.1 |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝑀) |
22 | 20, 21 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → 𝑝 = + ) |
23 | 22 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (𝑎𝑝𝑐) = (𝑎 + 𝑐)) |
24 | 22 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (𝑏𝑝𝑐) = (𝑏 + 𝑐)) |
25 | 23, 24 | breq12d 5083 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ((𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐) ↔ (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) |
26 | 25 | imbi2d 340 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ((𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)))) |
27 | 26 | ralbidv 3120 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)))) |
28 | 27 | 2ralbidv 3122 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)))) |
29 | 28 | anbi2d 628 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))))) |
30 | 29 | sbcbidv 3770 |
. . . . 5
⊢ ((𝑚 = 𝑀 ∧ 𝑝 = (+g‘𝑚)) → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))))) |
31 | 16, 30 | sbcied 3756 |
. . . 4
⊢ (𝑚 = 𝑀 → ([(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ [(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))))) |
32 | | fvexd 6771 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (le‘𝑚) ∈ V) |
33 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑙 = (le‘𝑚)) |
34 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑚 = 𝑀) |
35 | 34 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (le‘𝑚) = (le‘𝑀)) |
36 | 33, 35 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑙 = (le‘𝑀)) |
37 | | isomnd.2 |
. . . . . . . . . . . 12
⊢ ≤ =
(le‘𝑀) |
38 | 36, 37 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → 𝑙 = ≤ ) |
39 | 38 | breqd 5081 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (𝑎𝑙𝑏 ↔ 𝑎 ≤ 𝑏)) |
40 | 38 | breqd 5081 |
. . . . . . . . . 10
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → ((𝑎 + 𝑐)𝑙(𝑏 + 𝑐) ↔ (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) |
41 | 39, 40 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → ((𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)) ↔ (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
42 | 41 | ralbidv 3120 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)) ↔ ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
43 | 42 | 2ralbidv 3122 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐)) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |
44 | 43 | anbi2d 628 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑙 = (le‘𝑚)) → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
45 | 32, 44 | sbcied 3756 |
. . . . 5
⊢ (𝑚 = 𝑀 → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) ↔ (𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
46 | | eleq1 2826 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (𝑚 ∈ Toset ↔ 𝑀 ∈ Toset)) |
47 | 46 | anbi1d 629 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) ↔ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
48 | 45, 47 | bitrd 278 |
. . . 4
⊢ (𝑚 = 𝑀 → ([(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎𝑙𝑏 → (𝑎 + 𝑐)𝑙(𝑏 + 𝑐))) ↔ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
49 | 15, 31, 48 | 3bitrd 304 |
. . 3
⊢ (𝑚 = 𝑀 → ([(Base‘𝑚) / 𝑣][(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐))) ↔ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
50 | | df-omnd 31227 |
. . 3
⊢ oMnd =
{𝑚 ∈ Mnd ∣
[(Base‘𝑚) /
𝑣][(+g‘𝑚) / 𝑝][(le‘𝑚) / 𝑙](𝑚 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))} |
51 | 49, 50 | elrab2 3620 |
. 2
⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ (𝑀 ∈ Toset ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
52 | | 3anass 1093 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))) ↔ (𝑀 ∈ Mnd ∧ (𝑀 ∈ Toset ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐))))) |
53 | 51, 52 | bitr4i 277 |
1
⊢ (𝑀 ∈ oMnd ↔ (𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝑎 ≤ 𝑏 → (𝑎 + 𝑐) ≤ (𝑏 + 𝑐)))) |