Detailed syntax breakdown of Definition df-pc
| Step | Hyp | Ref
| Expression |
| 1 | | cpc 16874 |
. 2
class
pCnt |
| 2 | | vp |
. . 3
setvar 𝑝 |
| 3 | | vr |
. . 3
setvar 𝑟 |
| 4 | | cprime 16708 |
. . 3
class
ℙ |
| 5 | | cq 12990 |
. . 3
class
ℚ |
| 6 | 3 | cv 1539 |
. . . . 5
class 𝑟 |
| 7 | | cc0 11155 |
. . . . 5
class
0 |
| 8 | 6, 7 | wceq 1540 |
. . . 4
wff 𝑟 = 0 |
| 9 | | cpnf 11292 |
. . . 4
class
+∞ |
| 10 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 11 | 10 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 12 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 13 | 12 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 14 | | cdiv 11920 |
. . . . . . . . . 10
class
/ |
| 15 | 11, 13, 14 | co 7431 |
. . . . . . . . 9
class (𝑥 / 𝑦) |
| 16 | 6, 15 | wceq 1540 |
. . . . . . . 8
wff 𝑟 = (𝑥 / 𝑦) |
| 17 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 18 | 17 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 19 | 2 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑝 |
| 20 | | vn |
. . . . . . . . . . . . . . 15
setvar 𝑛 |
| 21 | 20 | cv 1539 |
. . . . . . . . . . . . . 14
class 𝑛 |
| 22 | | cexp 14102 |
. . . . . . . . . . . . . 14
class
↑ |
| 23 | 19, 21, 22 | co 7431 |
. . . . . . . . . . . . 13
class (𝑝↑𝑛) |
| 24 | | cdvds 16290 |
. . . . . . . . . . . . 13
class
∥ |
| 25 | 23, 11, 24 | wbr 5143 |
. . . . . . . . . . . 12
wff (𝑝↑𝑛) ∥ 𝑥 |
| 26 | | cn0 12526 |
. . . . . . . . . . . 12
class
ℕ0 |
| 27 | 25, 20, 26 | crab 3436 |
. . . . . . . . . . 11
class {𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑥} |
| 28 | | cr 11154 |
. . . . . . . . . . 11
class
ℝ |
| 29 | | clt 11295 |
. . . . . . . . . . 11
class
< |
| 30 | 27, 28, 29 | csup 9480 |
. . . . . . . . . 10
class
sup({𝑛 ∈
ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) |
| 31 | 23, 13, 24 | wbr 5143 |
. . . . . . . . . . . 12
wff (𝑝↑𝑛) ∥ 𝑦 |
| 32 | 31, 20, 26 | crab 3436 |
. . . . . . . . . . 11
class {𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦} |
| 33 | 32, 28, 29 | csup 9480 |
. . . . . . . . . 10
class
sup({𝑛 ∈
ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ) |
| 34 | | cmin 11492 |
. . . . . . . . . 10
class
− |
| 35 | 30, 33, 34 | co 7431 |
. . . . . . . . 9
class
(sup({𝑛 ∈
ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )) |
| 36 | 18, 35 | wceq 1540 |
. . . . . . . 8
wff 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )) |
| 37 | 16, 36 | wa 395 |
. . . . . . 7
wff (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) |
| 38 | | cn 12266 |
. . . . . . 7
class
ℕ |
| 39 | 37, 12, 38 | wrex 3070 |
. . . . . 6
wff
∃𝑦 ∈
ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) |
| 40 | | cz 12613 |
. . . . . 6
class
ℤ |
| 41 | 39, 10, 40 | wrex 3070 |
. . . . 5
wff
∃𝑥 ∈
ℤ ∃𝑦 ∈
ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))) |
| 42 | 41, 17 | cio 6512 |
. . . 4
class
(℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))) |
| 43 | 8, 9, 42 | cif 4525 |
. . 3
class if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < ))))) |
| 44 | 2, 3, 4, 5, 43 | cmpo 7433 |
. 2
class (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
| 45 | 1, 44 | wceq 1540 |
1
wff pCnt =
(𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |