MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclem Structured version   Visualization version   GIF version

Theorem pclem 16750
Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypothesis
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
Assertion
Ref Expression
pclem ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑛,𝑦,𝑁   𝑃,𝑛,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑛)

Proof of Theorem pclem
StepHypRef Expression
1 pclem.1 . . . . 5 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
21ssrab3 4033 . . . 4 𝐴 ⊆ ℕ0
3 nn0ssz 12494 . . . 4 0 ⊆ ℤ
42, 3sstri 3945 . . 3 𝐴 ⊆ ℤ
54a1i 11 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ⊆ ℤ)
6 0nn0 12399 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ ℕ0)
8 eluzelcn 12747 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℂ)
98adantr 480 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ)
109exp0d 14047 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑0) = 1)
11 1dvds 16181 . . . . . 6 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1211ad2antrl 728 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 ∥ 𝑁)
1310, 12eqbrtrd 5114 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑0) ∥ 𝑁)
14 oveq2 7357 . . . . . 6 (𝑛 = 0 → (𝑃𝑛) = (𝑃↑0))
1514breq1d 5102 . . . . 5 (𝑛 = 0 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃↑0) ∥ 𝑁))
1615, 1elrab2 3651 . . . 4 (0 ∈ 𝐴 ↔ (0 ∈ ℕ0 ∧ (𝑃↑0) ∥ 𝑁))
177, 13, 16sylanbrc 583 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ 𝐴)
1817ne0d 4293 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ≠ ∅)
19 nnssz 12493 . . 3 ℕ ⊆ ℤ
20 zcn 12476 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2120abscld 15346 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
2221ad2antrl 728 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ ℝ)
23 eluzelre 12746 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
2423adantr 480 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℝ)
25 eluz2gt1 12821 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
2625adantr 480 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 < 𝑃)
27 expnbnd 14139 . . . . 5 (((abs‘𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 < 𝑃) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
2822, 24, 26, 27syl3anc 1373 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
29 simprr 772 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
30 oveq2 7357 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝑃𝑛) = (𝑃𝑦))
3130breq1d 5102 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃𝑦) ∥ 𝑁))
3231, 1elrab2 3651 . . . . . . . . . . . . 13 (𝑦𝐴 ↔ (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
3329, 32sylib 218 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
3433simprd 495 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∥ 𝑁)
35 eluz2nn 12789 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
3635ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℕ)
3733simpld 494 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ0)
3836, 37nnexpcld 14152 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℕ)
3938nnzd 12498 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℤ)
40 simplrl 776 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ∈ ℤ)
41 simplrr 777 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ≠ 0)
42 dvdsleabs 16222 . . . . . . . . . . . 12 (((𝑃𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
4339, 40, 41, 42syl3anc 1373 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
4434, 43mpd 15 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ≤ (abs‘𝑁))
4538nnred 12143 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℝ)
4622adantr 480 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑁) ∈ ℝ)
4723ad2antrr 726 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℝ)
48 nnnn0 12391 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
4948ad2antrl 728 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ0)
5047, 49reexpcld 14070 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑥) ∈ ℝ)
51 lelttr 11206 . . . . . . . . . . 11 (((𝑃𝑦) ∈ ℝ ∧ (abs‘𝑁) ∈ ℝ ∧ (𝑃𝑥) ∈ ℝ) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
5245, 46, 50, 51syl3anc 1373 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
5344, 52mpand 695 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → (𝑃𝑦) < (𝑃𝑥)))
5437nn0zd 12497 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℤ)
55 nnz 12492 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
5655ad2antrl 728 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℤ)
5725ad2antrr 726 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 1 < 𝑃)
5847, 54, 56, 57ltexp2d 14158 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥 ↔ (𝑃𝑦) < (𝑃𝑥)))
5953, 58sylibrd 259 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦 < 𝑥))
6037nn0red 12446 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
61 nnre 12135 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
6261ad2antrl 728 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ)
63 ltle 11204 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦𝑥))
6460, 62, 63syl2anc 584 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥𝑦𝑥))
6559, 64syld 47 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
6665anassrs 467 . . . . . 6 ((((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) ∧ 𝑦𝐴) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
6766ralrimdva 3129 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) < (𝑃𝑥) → ∀𝑦𝐴 𝑦𝑥))
6867reximdva 3142 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥))
6928, 68mpd 15 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥)
70 ssrexv 4005 . . 3 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
7119, 69, 70mpsyl 68 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
725, 18, 713jca 1128 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  wss 3903  c0 4284   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   < clt 11149  cle 11150  cn 12128  2c2 12183  0cn0 12384  cz 12471  cuz 12735  cexp 13968  abscabs 15141  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164
This theorem is referenced by:  pcprecl  16751  pcprendvds  16752  pcpremul  16755
  Copyright terms: Public domain W3C validator