MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclem Structured version   Visualization version   GIF version

Theorem pclem 16871
Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypothesis
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
Assertion
Ref Expression
pclem ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑛,𝑦,𝑁   𝑃,𝑛,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑛)

Proof of Theorem pclem
StepHypRef Expression
1 pclem.1 . . . . 5 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
21ssrab3 4091 . . . 4 𝐴 ⊆ ℕ0
3 nn0ssz 12633 . . . 4 0 ⊆ ℤ
42, 3sstri 4004 . . 3 𝐴 ⊆ ℤ
54a1i 11 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ⊆ ℤ)
6 0nn0 12538 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ ℕ0)
8 eluzelcn 12887 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℂ)
98adantr 480 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ)
109exp0d 14176 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑0) = 1)
11 1dvds 16304 . . . . . 6 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1211ad2antrl 728 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 ∥ 𝑁)
1310, 12eqbrtrd 5169 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑0) ∥ 𝑁)
14 oveq2 7438 . . . . . 6 (𝑛 = 0 → (𝑃𝑛) = (𝑃↑0))
1514breq1d 5157 . . . . 5 (𝑛 = 0 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃↑0) ∥ 𝑁))
1615, 1elrab2 3697 . . . 4 (0 ∈ 𝐴 ↔ (0 ∈ ℕ0 ∧ (𝑃↑0) ∥ 𝑁))
177, 13, 16sylanbrc 583 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ 𝐴)
1817ne0d 4347 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ≠ ∅)
19 nnssz 12632 . . 3 ℕ ⊆ ℤ
20 zcn 12615 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2120abscld 15471 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
2221ad2antrl 728 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ ℝ)
23 eluzelre 12886 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
2423adantr 480 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℝ)
25 eluz2gt1 12959 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
2625adantr 480 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 < 𝑃)
27 expnbnd 14267 . . . . 5 (((abs‘𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 < 𝑃) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
2822, 24, 26, 27syl3anc 1370 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
29 simprr 773 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
30 oveq2 7438 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝑃𝑛) = (𝑃𝑦))
3130breq1d 5157 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃𝑦) ∥ 𝑁))
3231, 1elrab2 3697 . . . . . . . . . . . . 13 (𝑦𝐴 ↔ (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
3329, 32sylib 218 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
3433simprd 495 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∥ 𝑁)
35 eluz2nn 12921 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
3635ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℕ)
3733simpld 494 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ0)
3836, 37nnexpcld 14280 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℕ)
3938nnzd 12637 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℤ)
40 simplrl 777 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ∈ ℤ)
41 simplrr 778 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ≠ 0)
42 dvdsleabs 16344 . . . . . . . . . . . 12 (((𝑃𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
4339, 40, 41, 42syl3anc 1370 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
4434, 43mpd 15 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ≤ (abs‘𝑁))
4538nnred 12278 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℝ)
4622adantr 480 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑁) ∈ ℝ)
4723ad2antrr 726 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℝ)
48 nnnn0 12530 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
4948ad2antrl 728 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ0)
5047, 49reexpcld 14199 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑥) ∈ ℝ)
51 lelttr 11348 . . . . . . . . . . 11 (((𝑃𝑦) ∈ ℝ ∧ (abs‘𝑁) ∈ ℝ ∧ (𝑃𝑥) ∈ ℝ) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
5245, 46, 50, 51syl3anc 1370 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
5344, 52mpand 695 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → (𝑃𝑦) < (𝑃𝑥)))
5437nn0zd 12636 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℤ)
55 nnz 12631 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
5655ad2antrl 728 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℤ)
5725ad2antrr 726 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 1 < 𝑃)
5847, 54, 56, 57ltexp2d 14286 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥 ↔ (𝑃𝑦) < (𝑃𝑥)))
5953, 58sylibrd 259 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦 < 𝑥))
6037nn0red 12585 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
61 nnre 12270 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
6261ad2antrl 728 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ)
63 ltle 11346 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦𝑥))
6460, 62, 63syl2anc 584 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥𝑦𝑥))
6559, 64syld 47 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
6665anassrs 467 . . . . . 6 ((((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) ∧ 𝑦𝐴) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
6766ralrimdva 3151 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) < (𝑃𝑥) → ∀𝑦𝐴 𝑦𝑥))
6867reximdva 3165 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥))
6928, 68mpd 15 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥)
70 ssrexv 4064 . . 3 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
7119, 69, 70mpsyl 68 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
725, 18, 713jca 1127 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  wss 3962  c0 4338   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   < clt 11292  cle 11293  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  cexp 14098  abscabs 15269  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287
This theorem is referenced by:  pcprecl  16872  pcprendvds  16873  pcpremul  16876
  Copyright terms: Public domain W3C validator