MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclem Structured version   Visualization version   GIF version

Theorem pclem 16670
Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypothesis
Ref Expression
pclem.1 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
Assertion
Ref Expression
pclem ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑛,𝑦,𝑁   𝑃,𝑛,𝑥,𝑦
Allowed substitution hint:   𝐴(𝑛)

Proof of Theorem pclem
StepHypRef Expression
1 pclem.1 . . . . 5 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑁}
21ssrab3 4038 . . . 4 𝐴 ⊆ ℕ0
3 nn0ssz 12480 . . . 4 0 ⊆ ℤ
42, 3sstri 3951 . . 3 𝐴 ⊆ ℤ
54a1i 11 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ⊆ ℤ)
6 0nn0 12386 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ ℕ0)
8 eluzelcn 12733 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℂ)
98adantr 481 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℂ)
109exp0d 13999 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑0) = 1)
11 1dvds 16113 . . . . . 6 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1211ad2antrl 726 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 ∥ 𝑁)
1310, 12eqbrtrd 5125 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑0) ∥ 𝑁)
14 oveq2 7359 . . . . . 6 (𝑛 = 0 → (𝑃𝑛) = (𝑃↑0))
1514breq1d 5113 . . . . 5 (𝑛 = 0 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃↑0) ∥ 𝑁))
1615, 1elrab2 3646 . . . 4 (0 ∈ 𝐴 ↔ (0 ∈ ℕ0 ∧ (𝑃↑0) ∥ 𝑁))
177, 13, 16sylanbrc 583 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ 𝐴)
1817ne0d 4293 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ≠ ∅)
19 nnssz 12479 . . 3 ℕ ⊆ ℤ
20 zcn 12462 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2120abscld 15281 . . . . . 6 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℝ)
2221ad2antrl 726 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (abs‘𝑁) ∈ ℝ)
23 eluzelre 12732 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
2423adantr 481 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑃 ∈ ℝ)
25 eluz2gt1 12799 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
2625adantr 481 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 1 < 𝑃)
27 expnbnd 14089 . . . . 5 (((abs‘𝑁) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 < 𝑃) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
2822, 24, 26, 27syl3anc 1371 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥))
29 simprr 771 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
30 oveq2 7359 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝑃𝑛) = (𝑃𝑦))
3130breq1d 5113 . . . . . . . . . . . . . 14 (𝑛 = 𝑦 → ((𝑃𝑛) ∥ 𝑁 ↔ (𝑃𝑦) ∥ 𝑁))
3231, 1elrab2 3646 . . . . . . . . . . . . 13 (𝑦𝐴 ↔ (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
3329, 32sylib 217 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ ℕ0 ∧ (𝑃𝑦) ∥ 𝑁))
3433simprd 496 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∥ 𝑁)
35 eluz2nn 12763 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
3635ad2antrr 724 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℕ)
3733simpld 495 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ0)
3836, 37nnexpcld 14102 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℕ)
3938nnzd 12484 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℤ)
40 simplrl 775 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ∈ ℤ)
41 simplrr 776 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑁 ≠ 0)
42 dvdsleabs 16153 . . . . . . . . . . . 12 (((𝑃𝑦) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
4339, 40, 41, 42syl3anc 1371 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑃𝑦) ∥ 𝑁 → (𝑃𝑦) ≤ (abs‘𝑁)))
4434, 43mpd 15 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ≤ (abs‘𝑁))
4538nnred 12126 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑦) ∈ ℝ)
4622adantr 481 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑁) ∈ ℝ)
4723ad2antrr 724 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑃 ∈ ℝ)
48 nnnn0 12378 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
4948ad2antrl 726 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℕ0)
5047, 49reexpcld 14022 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑃𝑥) ∈ ℝ)
51 lelttr 11203 . . . . . . . . . . 11 (((𝑃𝑦) ∈ ℝ ∧ (abs‘𝑁) ∈ ℝ ∧ (𝑃𝑥) ∈ ℝ) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
5245, 46, 50, 51syl3anc 1371 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (((𝑃𝑦) ≤ (abs‘𝑁) ∧ (abs‘𝑁) < (𝑃𝑥)) → (𝑃𝑦) < (𝑃𝑥)))
5344, 52mpand 693 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → (𝑃𝑦) < (𝑃𝑥)))
5437nn0zd 12483 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℤ)
55 nnz 12478 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
5655ad2antrl 726 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℤ)
5725ad2antrr 724 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 1 < 𝑃)
5847, 54, 56, 57ltexp2d 14108 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥 ↔ (𝑃𝑦) < (𝑃𝑥)))
5953, 58sylibrd 258 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦 < 𝑥))
6037nn0red 12432 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
61 nnre 12118 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
6261ad2antrl 726 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → 𝑥 ∈ ℝ)
63 ltle 11201 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥𝑦𝑥))
6460, 62, 63syl2anc 584 . . . . . . . 8 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 < 𝑥𝑦𝑥))
6559, 64syld 47 . . . . . . 7 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ (𝑥 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
6665anassrs 468 . . . . . 6 ((((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) ∧ 𝑦𝐴) → ((abs‘𝑁) < (𝑃𝑥) → 𝑦𝑥))
6766ralrimdva 3149 . . . . 5 (((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) ∧ 𝑥 ∈ ℕ) → ((abs‘𝑁) < (𝑃𝑥) → ∀𝑦𝐴 𝑦𝑥))
6867reximdva 3163 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (∃𝑥 ∈ ℕ (abs‘𝑁) < (𝑃𝑥) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥))
6928, 68mpd 15 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥)
70 ssrexv 4009 . . 3 (ℕ ⊆ ℤ → (∃𝑥 ∈ ℕ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
7119, 69, 70mpsyl 68 . 2 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)
725, 18, 713jca 1128 1 ((𝑃 ∈ (ℤ‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wral 3062  wrex 3071  {crab 3405  wss 3908  c0 4280   class class class wbr 5103  cfv 6493  (class class class)co 7351  cc 11007  cr 11008  0cc0 11009  1c1 11010   < clt 11147  cle 11148  cn 12111  2c2 12166  0cn0 12371  cz 12457  cuz 12721  cexp 13921  abscabs 15079  cdvds 16096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-sup 9336  df-inf 9337  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-2 12174  df-3 12175  df-n0 12372  df-z 12458  df-uz 12722  df-rp 12870  df-fl 13651  df-seq 13861  df-exp 13922  df-cj 14944  df-re 14945  df-im 14946  df-sqrt 15080  df-abs 15081  df-dvds 16097
This theorem is referenced by:  pcprecl  16671  pcprendvds  16672  pcpremul  16675
  Copyright terms: Public domain W3C validator